1
|
Salamah M, Sipos B, Schelz Z, Zupkó I, Kiricsi Á, Szalenkó-Tőkés Á, Rovó L, Katona G, Balogh GT, Csóka I. Development, in vitro and ex vivo characterization of lamotrigine-loaded bovine serum albumin nanoparticles using QbD approach. Drug Deliv 2025; 32:2460693. [PMID: 39901331 PMCID: PMC11795762 DOI: 10.1080/10717544.2025.2460693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The present study aimed to prepare and optimize lamotrigine-loaded bovine serum albumin nanoparticles (LAM-NP) using the Quality by Design (QbD) approach and to investigate both the in vitro and ex vivo effects of different cross-linking agents glutaraldehyde (GLUT), glucose (GLUC) and 1-(3-dimethylaminutesopropyl)-3-ethylcarbodiimide hydrochloride (EDC) on intranasal applicability. Cross-linked LAM-NP from EDC (NP-EDC-1) showed the lowest Z-average value (163.7 ± 1.9 nm) and drug encapsulation efficacy (EE%) of 97.31 ± 0.17%. The drug release of GLUC cross-linked LAM-NP (NP-GLUC-9), glutaraldehyde cross-linked LAM-NP (NP-GLUT-2), and NP-EDC-1 at blood circulation conditions was higher than the initial LAM. The results of the blood-brain barrier parallel artificial membrane permeability assay (BBB-PAMPA) showed an increase in the permeability of LAM through the BBB with NP-GLUC-9 and an increase in flux with all selected formulations. The ex vivo study showed that LAM diffusion from the selected formulations through the human nasal mucosa was higher than in case of initial LAM. The cytotoxicity study indicated that BSA-NP reduced LAM toxicity, and GLUC 9 mM and EDC 1 mg could be alternative cross-linking agents to avoid GLUT 2% v/v toxicity. Furthermore, permeability through Caco-2 cells showed that nasal epithelial transport/absorption of LAM was improved by using BSA-NPs. The use of BSA-NP may be a promising approach to enhance the solubility, permeability through BBB and decrease the frequency of dosing and adverse effects of LAM.
Collapse
Affiliation(s)
- Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenkó-Tőkés
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
De Gaetano F, Mannino D, Celesti C, Bulzomí M, Iraci N, Vincenzo Giofrè S, Esposito E, Paterniti I, Anna Ventura C. Randomly methylated β-cyclodextrin improves water - solubility, cellular protection and mucosa permeability of idebenone. Int J Pharm 2024; 665:124718. [PMID: 39288841 DOI: 10.1016/j.ijpharm.2024.124718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's are very common today. Idebenone (IDE) is a potent antioxidant with good potential for restoring cerebral efficiency in cases of these and other medical conditions, but a serious drawback for the clinical use of IDE in neurological disorders lies in its scarce water solubility, which greatly inhibits its bioavailability. In this work, we prepared the inclusion complex of IDE with randomly methylated β-cyclodextrin (RAMEB), resulting in improved water solubility of the included drug; then its in vitro biological activity and ex vivo permeability was evalutated. The solid complex was characterized through FT-IR spectroscopy, Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). A 78-fold improvement of the solubility of IDE in water resulted, together with a strong 1:1 host-guest interaction (association constant of 12630 M-1), and dissolution of the complex within 15 min, all evidenced during the in-solution studies. Biological in vitro studies were then performed on differentiated human neuroblastoma cells (SH-SY5Y) subjected to oxidative stress. Pretreatment with IDE/RAMEB positively affected cell viability, promoted the nuclear translocation of Nrf2, and increased the levels of GSH as well as those of the endogenous antioxidant enzymes Mn-SOD and HO-1. Lastly, the complexation significantly improved the permeation of IDE through isolated rat nasal mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Deborah Mannino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Consuelo Celesti
- Dipartimento di ingegneria, Università di Messina, Contrada Di Dio, 98166 Messina, Italy.
| | - Maria Bulzomí
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Nunzio Iraci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Emanuela Esposito
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Irene Paterniti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
3
|
Gu Q, Wu H, Sui X, Zhang X, Liu Y, Feng W, Zhou R, Du S. Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases. Pharmaceutics 2024; 16:1304. [PMID: 39458634 PMCID: PMC11511050 DOI: 10.3390/pharmaceutics16101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Numerical simulation plays an important role in pharmaceutical preparation recently. Mechanistic models, as a type of numerical model, are widely used in the study of pharmaceutical preparations. Mechanistic models are based on a priori knowledge, i.e., laws of physics, chemistry, and biology. However, due to interdisciplinary reasons, pharmacy researchers have greater difficulties in using computer models. METHODS In this paper, we highlight the application scenarios and examples of mechanistic modelling in pharmacy research and provide a reference for drug researchers to get started. RESULTS By establishing a suitable model and inputting preparation parameters, researchers can analyze the drug preparation process. Therefore, mechanistic models are effective tools to optimize the preparation parameters and predict potential quality problems of the product. With product quality parameters as the ultimate goal, the experiment design is optimized by mechanistic models. This process emphasizes the concept of quality by design. CONCLUSIONS The use of numerical simulation saves experimental cost and time, and speeds up the experimental process. In pharmacy experiments, part of the physical information and the change processes are difficult to obtain, such as the mechanical phenomena during tablet compression and the airflow details in the nasal cavity. Therefore, it is necessary to predict the information and guide the formulation with the help of mechanistic models.
Collapse
Affiliation(s)
- Qifei Gu
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xue Sui
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Xiaodan Zhang
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Yongchao Liu
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Wei Feng
- Wangjing Hospital, China Academy of Traditional Chinese Medicine, Beijing 100102, China;
| | - Rui Zhou
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Shouying Du
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| |
Collapse
|
4
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
5
|
Huang Q, Chen X, Yu S, Gong G, Shu H. Research progress in brain-targeted nasal drug delivery. Front Aging Neurosci 2024; 15:1341295. [PMID: 38298925 PMCID: PMC10828028 DOI: 10.3389/fnagi.2023.1341295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
The unique anatomical and physiological connections between the nasal cavity and brain provide a pathway for bypassing the blood-brain barrier to allow for direct brain-targeted drug delivery through nasal administration. There are several advantages of nasal administration compared with other routes; for example, the first-pass effect that leads to the metabolism of orally administered drugs can be bypassed, and the poor compliance associated with injections can be minimized. Nasal administration can also help maximize brain-targeted drug delivery, allowing for high pharmacological activity at lower drug dosages, thereby minimizing the likelihood of adverse effects and providing a highly promising drug delivery pathway for the treatment of central nervous system diseases. The aim of this review article was to briefly describe the physiological structures of the nasal cavity and brain, the pathways through which drugs can enter the brain through the nose, the factors affecting brain-targeted nasal drug delivery, methods to improve brain-targeted nasal drug delivery systems through the application of related biomaterials, common experimental methods used in intranasal drug delivery research, and the current limitations of such approaches, providing a solid foundation for further in-depth research on intranasal brain-targeted drug delivery systems (see Graphical Abstract).
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Shu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|