1
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
2
|
Harastova-Pavlova I, Drazanova E, Kratka L, Amchova P, Hrickova M, Macicek O, Vitous J, Jirik R, Ruda-Kucerova J. Chronic citalopram effects on the brain neurochemical profile and perfusion in a rat model of depression detected by the NMR techniques - spectroscopy and perfusion. Biomed Pharmacother 2024; 181:117656. [PMID: 39486369 DOI: 10.1016/j.biopha.2024.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a mental illness with a high worldwide prevalence and suboptimal pharmacological treatment, which necessitates the development of novel, more efficacious MDD medication. Nuclear magnetic resonance (NMR) can non-invasively provide insight into the neurochemical state of the brain using proton magnetic resonance spectroscopy (1H MRS), and an assessment of regional cerebral blood flow (rCBF) by perfusion imaging. These methods may provide valuable in vivo markers of the pathological processes underlying MDD. METHODS This study examined the effects of the chronic antidepressant medication, citalopram, in a well-validated MDD model induced by bilateral olfactory bulbectomy (OB) in rats. 1H MRS was utilized to assess key metabolite ratios in the dorsal hippocampus and sensorimotor cortex bilaterally, and arterial spin labelling was employed to estimate rCBF in several additional brain regions. RESULTS The 1H MRS data results suggest lower hippocampal Cho/tCr and lower cortical NAA/tCr levels as a characteristic of the OB phenotype. Spectroscopy revealed lower hippocampal Tau/tCr in citalopram-treated rats, indicating a potentially deleterious effect of the drug. However, the significant OB model-citalopram treatment interaction was observed using 1H MRS in hippocampal mI/tCr, Glx/tCr and Gln/tCr, indicating differential treatment effects in the OB and control groups. The perfusion data revealed higher rCBF in the whole brain, hippocampus and thalamus in the OB rats, while citalopram appeared to normalise it without affecting the control group. CONCLUSION Collectively, 1H MRS and rCBF approaches demonstrated their capacity to capture an OB-induced phenotype and chronic antidepressant treatment effect in multiple brain regions.
Collapse
Affiliation(s)
- Iveta Harastova-Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Drazanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hrickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Macicek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Vitous
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Zhou J, Luo D, An Y, Gao Y, Zhang J, Chen Y. Olfactory dysfunction decreased local field potential in the reward system and increased EtOH consumption in mice. Neurochem Int 2024; 180:105875. [PMID: 39393425 DOI: 10.1016/j.neuint.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
The relationship between olfactory dysfunction and alcohol intake is unobvious. Chronic alcohol intake results in reduced olfactory acuity and olfactory discrimination and addiction in humans. However, alcohol is a beverage with distinctive odors, which usually works as a cue to induce addictive memories and craving behavior. Whether olfactory impairment increase or decrease alcohol consumption remains an important but unclear issue. In this study, we measured ethanol (EtOH) consumption in the two-bottle choice EtOH drinking test, two bottle choice EtOH/sucrose drinking test and the drinking in the dark (DID) test during the olfactory loss. We also recorded local field potentials (LFPs) from the brain reward system, the ventral tegmental area (VTA), nucleus accumbens (NAc), and piriform cortex (Pir) one and four weeks after the induction of olfactory epithelium lesions using zinc sulfate (ZnSO4) in mice. The results showed that the EtOH consumption and preference were increased during the period of olfactory dysfunction. 1 week after the olfactory injury, LFP powers in the reward system at low- and high-gamma bands decreased significantly, coherence between the Pir and the reward system was also decrease. 4 weeks after the ZnSO4 treatment, LFP powers were reversed, but the coherence between VTA and NAc was decreased, indicating lasting effects post-recovery. This study demonstrates that olfactory dysfunction increased EtOH consumption in mice, which was accompanied by decreased LFP power and coherence in the reward system, which suggest that olfactory deficits changed activities in the reward system and could alter reward-seeking behaviors, which provide insights into the neurobiology of alcohol addiction.
Collapse
Affiliation(s)
- Jianhong Zhou
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650550, China; Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan, 650550, China
| | - Di Luo
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650550, China
| | - Yingjie An
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650550, China
| | - Yuan Gao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650550, China; Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650034, China
| | - Jichuan Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650550, China
| | - Yanmei Chen
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650550, China.
| |
Collapse
|
5
|
Borikar SP, Chitode GV, Tapre DN, Lokwani DK, Jain SP. Empagliflozin ameliorates olfactory bulbectomy-induced depression by mitigating oxidative stress and possible involvement of brain derived neurotrophic factor in diabetic rats. Int J Neurosci 2024:1-17. [PMID: 39392472 DOI: 10.1080/00207454.2024.2414270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, has recently reported to prevent the depression in chronic animal model. The present study aimed to explore the antidepressant potential of empagliflozin using a neuroinflammation-mediated depression involving the olfactory bulbectomy (OBX) model in diabetic rats. A low dose of streptozotocin was injected to induce diabetes in all group of animals. Following the confirmation of hyperglycemia, OBX surgery was performed. Post-surgery, the drug treatments were administered orally for 14 consecutive days. The study evaluated the effects of daily oral administration of empagliflozin at doses of 5 and 10 mg/kg, alongside metformin (200 mg/kg) and clomipramine (50 mg/kg), on OBX-induced behavioral depression in rats. Separate sham and vehicle control groups were also maintained. Behavioral parameters in open field, forced swim test, elevated plus maze and splash test were recorded on 28th day. Results showed that empagliflozin, at the higher dose, significantly enhanced behavioral outcomes, evidenced by increased distance travelled, greater open arm entries, and reduced immobility, alongside a notable reduction in grooming time. Moreover, empagliflozin significantly restored the antioxidants level specifically Glutathione (GSH) and Catalase (CAT) in OBX insulted rat brain and decreased Lipid peroxidase (LPO). Notably, molecular docking study demonstrated a good binding affinity of empagliflozin for Brain-Derived Neurotrophic Factor (BDNF), suggesting that its antidepressant effects may be mediated through the modulation of the BDNF pathway. These findings support the potential therapeutic application of empagliflozin for depression, particularly in cases associated with neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Sachin P Borikar
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Gaurav V Chitode
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Deepali N Tapre
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Shirish P Jain
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Buldana, India
| |
Collapse
|