1
|
Zhou W, He Y, Lv JM, Wang R, He H, Wu M, Zhang R, He J. Preparation technologies, structural characteristics and biological activities of polysaccharides from bee pollen: A review. Int J Biol Macromol 2025; 306:141545. [PMID: 40020838 DOI: 10.1016/j.ijbiomac.2025.141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Bee pollen, a natural honeybee product, is hailed as a treasure trove of human nutrition. Among the nourishing substances of bee pollen, the constituents with a low molecular weight (such as phenolic acids and flavonoid glycosides) have been extensively studied in the past decades, whereas the polysaccharides with a relatively high molecular weight have received much less attention. To deepen our understanding of bee pollen polysaccharides, this review summarizes the published findings related to their preparation technologies, structural characteristics and biological activities. Among the preparation technologies, ultrasonic-assisted extraction is currently the most effective technology for the recovery of polysaccharides from bee pollen, because ultrasound can crack the pollen exine into fragments and facilitate the release of polysaccharides present in the pollen intine. The preliminary structures, including the molecular weight and monosaccharide composition, of bee pollen polysaccharides have been widely reported, but their fine structures have not fully elucidated. Moreover, bee pollen polysaccharides have antioxidant, immunomodulatory, and antitumor activities, exhibiting potential application in functional foods. Furthermore, bee pollen polysaccharides can modulate the composition of gut microbiota and promote the production of short-chain fatty acids. It is expected that this review can provide inspiration for the development and utilization of bee pollen polysaccharides.
Collapse
Affiliation(s)
- Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuzhen He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ji-Min Lv
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Xianghu Laboratory, Hangzhou 311231, PR China
| | - Runqi Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huaiye He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
2
|
Marangelo C, Marsiglia R, Nissen L, Scanu M, Toto F, Siroli L, Gottardi D, Braschi G, Chierico FD, Bordoni A, Gianotti A, Lanciotti R, Patrignani F, Putignani L, Vernocchi P. Functional foods acting on gut microbiota-related wellness: The multi-unit in vitro colon model to assess gut ecological and functional modulation. Food Res Int 2025; 202:115577. [PMID: 39967085 DOI: 10.1016/j.foodres.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
The aim of this study was to investigate the effect of a functional probiotic cheese (FPC) on gut microbiota (GM), after simulated digestion performed by a multi-unit in vitro colon model (MICODE). Squacquerone-like cheese was produced using the starter Streptococcus thermophilus (control, CTRL), and supplemented with the probiotic Lacticaseibacillus rhamnosus, which was either subjected to high pressure homogenization (LrH) or not (Lr). Samples were stratified by cheese type, storage time, and colonic fermentation phase. Samples were then digested with MICODE and digests were characterized for ecological and functional profiles. The lactobacilli detected in Lr and LrH cheeses (9.0 log CFU/g) were represented by the probiotic strain L. rhamnosus and remained unchanged after storage at 4 °C. Lactobacilli levels in CTRLs increased from 1.5 log CFU/g to 2.0 log CFU/g after six days at 4 °C, while total coliforms remained below 1.5 log CFU/g in all samples. Real-time qPCR indicated a positive GM response after FPC simulated digestion, highlighting an abundance of bifidobacteria, lactobacilli and Clostridium group IV in LrH samples. Metataxonomy revealed higher levels of Firmicutes and Proteobacteria (p ≤ 0.05) after simulated digestion, as well as Megasphaera, Escherichia, Prevotella and Dorea. Moreover, an increase of short and medium chain fatty acids were detected by metabolomics. Overexpression of inferred KEGG metabolic pathways showed mainly fatty acids, novobiocin and amino acid metabolism. Understanding how functional foods can modify the GM may lead to the development of targeted microbiome-based therapies and the exploitation of these foods for the benefit of human health.
Collapse
Affiliation(s)
- Chiara Marangelo
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Riccardo Marsiglia
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, 40100 Bologna, Italy
| | - Matteo Scanu
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Toto
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Federica Del Chierico
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; CRBA, Centre for Applied Biomedical Research, Alma Mater Studiorum - University of Bologna, Policlinico di Sant'Orsola, 40100 Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, 47521 Cesena, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
3
|
Bryś MS, Olszewski K, Bartoń M, Strachecka A. Changes in the Activities of Antioxidant Enzymes in the Fat Body and Hemolymph of Apis mellifera L. Due to Pollen Monodiets. Antioxidants (Basel) 2025; 14:69. [PMID: 39857403 PMCID: PMC11762738 DOI: 10.3390/antiox14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The increasing prevalence of monocultures has reduced floral diversity, diminishing pollen diet variety for bees. This study examines the impact of monofloral pollen diets (hazel, rapeseed, pine, buckwheat, Phacelia, goldenrod) on the antioxidant enzyme activities in the fat body from tergite 3, tergite 5, sternite, and hemolymph of honey bees. We show that pollen from plants such as rapeseed, Phacelia, buckwheat, and goldenrod (rich in phenolic compounds and flavonoids) increases the activities of SOD, CAT, GST, and GPx in the fat body and hemolymph compared to the control group. Although it is commonly known that a monodiet is one of the stress factors for bees, the increase in the activities of these enzymes in the hemolymph and fat body of workers fed with pollen candy compared to those fed only sugar candy has a positive (although inconclusive) effect. These activities in the hemolymph and fat body of bees fed with pollen from anemophilous plants are usually lower compared to those in bees fed with candy containing 10% pollen from rapeseed, Phacelia, buckwheat, or goldenrod. Further research is needed to fully understand the complex interactions among monofloral pollen diets, antioxidant enzyme activities, and the overall physiology of honey bees.
Collapse
Affiliation(s)
- Maciej Sylwester Bryś
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Krzysztof Olszewski
- Subdepartment of Apidology, Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Maciej Bartoń
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
4
|
Jaimez-Alvarado S, López-Tenorio II, Barragán-De los Santos J, Bello-Vega DC, Gómez FJR, Amedei A, Berrios-Bárcenas EA, Aguirre-García MM. Gut-Heart Axis: Microbiome Involvement in Restrictive Cardiomyopathies. Biomedicines 2025; 13:144. [PMID: 39857728 PMCID: PMC11761909 DOI: 10.3390/biomedicines13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
An intriguing aspect of restrictive cardiomyopathies (RCM) is the microbiome role in the natural history of the disease. These cardiomyopathies are often difficult to diagnose and so result in significant morbidity and mortality. The human microbiome, composed of billions of microorganisms, influences various physiological and pathological processes, including cardiovascular health. Studies have shown that gut dysbiosis, an imbalance in the composition of intestinal bacteria, can contribute to systemic inflammation, a key factor in many cardiovascular conditions. An increase in gut permeability, frequently caused by dysbiosis, allows bacterial endotoxins to enter the bloodstream, activating inflammatory pathways that exacerbate cardiac dysfunction. Recent reports highlight the potential role of microbiome in amyloidogenesis, as certain bacteria produce proteins that accelerate the formation of amyloid fibrils. Concurrently, advancements in amyloidosis treatments have sparked renewed hopes, marking a promising era for managing these kinds of diseases. These findings suggest that the gut-heart axis may be a potential factor in the development and progression of cardiovascular disease like RCM, opening new paths for therapeutic intervention. The aim of this review is to provide a detailed overview of the gut-heart axis, focusing on RCM.
Collapse
Affiliation(s)
- Samuel Jaimez-Alvarado
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
- Outpatient Care Department, Cardiomyopathy Clinic, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Itzel Ivonn López-Tenorio
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Javier Barragán-De los Santos
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Dannya Coral Bello-Vega
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| | - Francisco Javier Roldán Gómez
- Outpatient Care Department, Cardiomyopathy Clinic, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| | | | - María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (S.J.-A.); (I.I.L.-T.); (J.B.-D.l.S.); (D.C.B.-V.)
| |
Collapse
|
5
|
Harat SG, Pourjafar H. Health Benefits and Safety of Postbiotics Derived from Different Probiotic Species. Curr Pharm Des 2025; 31:116-127. [PMID: 39297457 DOI: 10.2174/0113816128335414240828105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 02/18/2025]
Abstract
Nowadays, the usage of probiotics in the food industry has become common. It has been proven that probiotics have many health benefits, such as adjusting the intestinal microbiome, boosting the immune system, and enhancing anti-inflammatory and anti-cancer activities. However, in recent years, some concerns have arisen about the consumption of probiotics, especially in vulnerable populations such as elderly, infants, and people with underlying diseases. As a result, finding a new alternative to probiotics that has the same function as probiotics and is safer has been prioritized. In recent years, postbiotics have been introduced as a great replacement for probiotics. However, the safety of these compounds is not exactly confirmed due to the limited in vivo research. In this review, the definition, classification, activities, limitations, and some advantages of postbiotics over probiotics are discussed. Finally, the limited published data about the safety of postbiotics is summarized.
Collapse
Affiliation(s)
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Dinu LD, Gatea F, Matei F, Banciu C, Vamanu E. Gut Microbiota Modulation by Selenium and Zinc Enrichment Postbiotic on Dysbiosis Associated with Hypertension. Curr Vasc Pharmacol 2024; 22:365-374. [PMID: 38779729 DOI: 10.2174/0115701611290537240509061549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Targeting gut dysbiosis to treat chronic diseases or to alleviate the symptoms is a new direction for medical adjuvant therapies. Recently, postbiotics have received considerable attention as they are non-viable probiotic preparations that confer various health benefits to the host without the safety problems associated with using live microbial cells. OBJECTIVE The aim of the study is to obtain selenium (Se) and zinc (Zn) enriched Saccharomyces boulardii postbiotic biomass and to analyze its modulation effect because these minerals play an important role in reducing gut dysbiosis linked to cardiovascular (CV) diseases. METHOD The effect of the S. boulardii and Se/Zn enriched yeast postbiotics on CV microbial fingerprint was studied in vitro using the gastrointestinal system (GIS 1) and analyzed by microbiological, chemical, and qPCR methods. RESULT There was a 2.2 log CFU/mL increase in the total bacterial load after SeZn postbiotic treatment and in the qPCR counts of Firmicutes phyla for both treatments. Beneficial taxa, Bifidobacterium spp. and Lactobacillus spp., as well as Bacteroidesspp. were up to 1.5 log higher after mineral- enriched postbiotic application, while the acetic acid level increased. CONCLUSION These preliminary studies highlight the therapeutic potential of using Se/Zn enriched yeast postbiotics as adjuvants for clinical treatments of CV diseases.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Florentina Gatea
- Department of Biotechnology, Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Florentina Matei
- Faculty of Food Industry and Tourism, Transylvania University of Brasov, Brasov, Romania
| | - Cristian Banciu
- Department of Ecology, Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
7
|
Zanfirescu A, Avram I, Gatea F, Roșca R, Vamanu E. In Vitro and In Vivo Antihyperglycemic Effects of New Metabiotics from Boletus edulis. Life (Basel) 2023; 14:68. [PMID: 38255683 PMCID: PMC10817235 DOI: 10.3390/life14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing incidence of diabetes has prompted the need for new treatment strategies, including natural products that reduce glycemia values. This work examined the in vitro and in vivo antihyperglycemic effects of new metabiotics derived from Boletus edulis extracts. The metabiotics were obtained from 100% B. edulis, and two other products, CARDIO and GLYCEMIC, from Anoom Laboratories SRL, which contain other microbial species related to B. edulis. Our in vitro investigations (simulations of the microbiota of patients with type 2 diabetes (T2D)) demonstrated that B. edulis extracts modulate the microbiota, normalizing its pattern. The effects were further tested in vivo, employing a mouse model of T2D. The tested extracts decreased glycemia values compared to the control and modulated the microbiota. The metabiotics had positive effects on T2D in vitro and in vivo, suggesting their potential to alleviate diabetes-associated microbiota dysbiosis.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 36–46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| | - Răzvan Roșca
- Anoom Laboratories SRL, 18th Resita Str., ap. 58, 4th District, 024023 Bucharest, Romania;
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|