1
|
Liang W, Sun W, Li C, Zhou J, Long C, Li H, Xu D, Xu H. Glymphatic system dysfunction and cerebrospinal fluid retention in gliomas: evidence from perivascular space diffusion and volumetric analysis. Cancer Imaging 2025; 25:51. [PMID: 40197529 PMCID: PMC11974089 DOI: 10.1186/s40644-025-00868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Gliomas may impair glymphatic function and alter cerebrospinal fluid (CSF) dynamics through structural brain changes, potentially affecting peritumoral brain edema (PTBE) and fluid clearance. This study investigated the impact of gliomas on glymphatic system function and CSF volume via diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) and volumetric magnetic resonance imaging (MRI), which clarified the relationships between tumor characteristics and glymphatic system disruption. METHODS In this prospective study, 112 glioma patients and 56 healthy controls underwent MRI to calculate DTI-ALPS indices and perform volumetric analyses of CSF, tumor, and PTBE. Statistical analyses were used to assess the relationships between the DTI-ALPS index, tumor volume, PTBE volume, and clinical characteristics. RESULTS Glioma patients had significantly lower DTI-ALPS indices (1.266 ± 0.258 vs. 1.395 ± 0.174, p < 0.001) and greater CSF volumes (174.53 ± 34.89 cm³ vs. 154.25 ± 20.89 cm³, p < 0.001) than controls did. The DTI-ALPS index was inversely correlated with tumor volume (r = -0.353, p < 0.001) and PTBE volume (r = -0.266, p = 0.015). High-grade gliomas were associated with lower DTI-ALPS indices and larger PTBE volumes (all p < 0.001). Tumor grade emerged as an independent predictor of the DTI-ALPS index in multivariate analysis (β = -0.244, p = 0.011). CONCLUSION Gliomas are associated with significant glymphatic dysfunction, as evidenced by reduced DTI-ALPS indices and increased CSF and PTBE volumes. The DTI-ALPS index serves as a potential biomarker of glymphatic disruption in glioma patients, offering insights into tumor-related fluid changes and the pathophysiology of brain-tumor interactions.
Collapse
Affiliation(s)
- Weiqiang Liang
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Chunyan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Jie Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Changyou Long
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, Wuhan, China.
| |
Collapse
|
2
|
Zhang RZ, Ezhov I, Balcerak M, Zhu A, Wiestler B, Menze B, Lowengrub JS. Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans. Med Image Anal 2025; 101:103423. [PMID: 39700844 DOI: 10.1016/j.media.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/01/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024]
Abstract
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging and diagnosis. This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion partial differential equation (PDE) model of GBM growth from a single 3D structural MRI snapshot. PINNs embed both the data and the PDE into a loss function, thus integrating theory and data. Key innovations include the identification and estimation of characteristic non-dimensional parameters, a pre-training step that utilizes the non-dimensional parameters and a fine-tuning step to determine the patient specific parameters. Additionally, the diffuse-domain method is employed to handle the complex brain geometry within the PINN framework. The method is validated on both synthetic and patient datasets, showing promise for personalized GBM treatment through parametric inference within clinically relevant timeframes.
Collapse
Affiliation(s)
- Ray Zirui Zhang
- Department of Mathematics, University of California Irvine, USA.
| | | | | | | | | | | | - John S Lowengrub
- Department of Mathematics, University of California Irvine, USA; Department of Biomedical Engineering, University of California Irvine, USA.
| |
Collapse
|
3
|
Pogosbekyan E, Zakharova N, Batalov A, Shevchenko A, Fadeeva L, Bykanov A, Tyurina A, Chekhonin I, Galstyan S, Pitskhelauri D, Pronin I, Usachev D. Individual Brain Tumor Invasion Mapping Based on Diffusion Kurtosis Imaging. Sovrem Tekhnologii Med 2025; 17:81-90. [PMID: 40071079 PMCID: PMC11892574 DOI: 10.17691/stm2025.17.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 03/14/2025] Open
Abstract
The aim of the investigation is to develop and implement an algorithm for image analysis in brain tumors (glioblastoma and metastasis) based on diffusion kurtosis MRI images (DKI) for the assessment of anisotropic changes in brain tissues in the directions from the tumor to the intact (as shown by the standard MRI data) white matter, which will enable generating individual tumor invasion maps. Materials and Methods A healthy volunteer and two patients (one with glioblastoma and the other with a single metastasis of small cell lung cancer) were examined by DKI obtaining 12 parametric kurtosis maps for each participant. Results During the investigation, we have developed an algorithm of DKI analysis and plotting the profile of tissue parameters in the direction from the tumor towards the unaffected white matter according to the data of standard MRI. Changes of the DKI indicators along the trajectories built using the proposed algorithm in the perifocal zone of glioblastoma and metastasis have been compared in this work. We obtained not only changes in the parameters (gradients in trajectory plots) but also a visual reflection (on color maps) of a known pathomorphology of the process - no significant gradients of DKI parameters were detected in the perifocal metastasis edema, since there was a pure vasogenic edema and no infiltrative component. In glioblastoma, gradients of DKI parameters were found not only in the zone of perifocal edema but beyond the zone of MR signal as well, which is believed to reflect diffusion disorders along the white matter fibers and different degrees of brain tissue infiltration by glioblastoma cells. Conclusion The developed algorithm of DKI analysis in brain tumors makes it possible to determine the degree of changes in the tissue microstructure in the perifocal zone of brain glioblastoma relative to the metastasis. The study aimed at obtaining individual maps of tumor invasion, which will be applied in planning neurosurgical and radiation treatment and for predicting directions of further growth of malignant gliomas.
Collapse
Affiliation(s)
- E.L. Pogosbekyan
- Medical Physicist, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - N.E. Zakharova
- MD, DSc, Professor of the Russian Academy of Sciences, Chief Researcher, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.I. Batalov
- MD, PhD, Researcher, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.M. Shevchenko
- Radiologist, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - L.M. Fadeeva
- Leading Engineer, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.E. Bykanov
- MD, PhD, Researcher, Neurosurgery Department No.7; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - A.N. Tyurina
- MD, PhD, Researcher, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - I.V. Chekhonin
- MD, PhD, Radiologist, Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - S.A. Galstyan
- Pathologist, Department of Pathology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - D.I. Pitskhelauri
- MD, DSc, Professor, Head of Neurosurgery Department No.7; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - I.N. Pronin
- MD, DSc, Professor, Academician of the Russian Academy of Sciences, Head of the Department of Neuroradiology; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - D.Yu. Usachev
- MD, DSc, Professor, Academician of the Russian Academy of Sciences, Director; N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| |
Collapse
|
4
|
Orasanu CI, Aschie M, Deacu M, Bosoteanu M, Vamesu S, Enciu M, Cozaru GC, Mitroi AF, Ghitoi SA, Cretu AM, Ursica OA, Voda RI. Comparative Clinical-Imaging and Histogenetic Analysis Between Astrocytoma IDH-Mutant Grade 4 and Glioblastoma IDH-Wildtype-Is There Really a Worse One? Diagnostics (Basel) 2025; 15:438. [PMID: 40002588 PMCID: PMC11854731 DOI: 10.3390/diagnostics15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Brain tumors pose a significant health threat, leading to high morbidity and mortality rates. Astrocytoma IDH-mutant grade 4 (A4IDHmt) and glioblastoma IDH-wildtype (G4IDHwt) exhibit similar clinical and imaging characteristics. This study aims to highlight the differences in their clinical evolution and histogenetic aspects with the possible therapeutic impact, as well as the adverse prognostic factors in patient survival. Methods: We performed a 10-year retrospective study of grade 4 gliomas, evaluating immunomarkers and FISH tests. We also quantified tumor necrosis and microvascular density. Results: A total of 81 cases were identified; 54.32% were A4IDHmt. We observed that A4IDHmt patients were younger (34.10% under 50) and had a higher survival rate (4.55%). This group also exhibited a more pronounced microvascular density (p = 0.010) and proliferative index (p = 0.026). G4IDHwt was associated with larger tumor volumes (94.84 cm3 vs. 86.14 cm3), lower resectability rates (82.88% vs. 87.67%), and a more significant immature cell population (83.78% vs. 68.18%). In the case of both, the negative risk on survival in the univariate analysis is given by advanced age (A4IDHmt: HR = 1.035, G4IDHwt: HR = 1.045) and p53 immunopositivity (A4IDHmt: HR = 6.962, G4IDHwt: HR = 4.680). Conclusions: The negative risk factors for A4IDHmt include the rapid onset of clinical symptoms (HR = 2.038), diabetes mellitus (HR = 2.311), arterial hypertension (HR = 2.325), residual tumor (HR = 2.662), increased residual tumor volume (HR = 1.060), increased microvascular density (HR = 1.096), and high tumor necrosis (HR = 1.097). For G4IDHwt, the negative risk factors consist of increased residual volume (HR = 1.023), lost PTEN immunoreaction (HR = 33.133), and unmethylated DNA status (HR = 6.765, respectively HR = 20.573). Even if it has more risk factors, A4IDHmt is the lesser evil.
Collapse
Affiliation(s)
- Cristian Ionut Orasanu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
| | - Mariana Aschie
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
- Department of Anatomy, Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
- Department VIII—Medical Sciences, The Romanian Academy of Scientists, 030167 Bucharest, Romania
| | - Mariana Deacu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Madalina Bosoteanu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Sorin Vamesu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Manuela Enciu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
- Department of Genetics, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
- Department of Genetics, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Sinziana Andra Ghitoi
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Ana Maria Cretu
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
| | - Oana Andreea Ursica
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Raluca Ioana Voda
- Department of Pathology, Clinical Service of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University, 900591 Constanta, Romania
| |
Collapse
|
5
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
6
|
Sipos TC, Attila K, Kocsis L, Bălașa A, Chinezu R, Baróti BÁ, Pap Z. Clinicopathological Parameters and Immunohistochemical Profiles in Correlation with MRI Characteristics in Glioblastomas. Int J Mol Sci 2024; 25:13043. [PMID: 39684754 PMCID: PMC11642654 DOI: 10.3390/ijms252313043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma is considered the most aggressive tumor of the central nervous system. The tumor microenvironment includes several components, such as endothelial cells, immune cells, and extracellular matrix components like matrix metalloproteinase-9 (MMP-9), which facilitates the proliferation of endothelial cells with pro-angiogenic roles. The MRI characteristics of glioblastomas can contribute to determining the prognosis. The aim of this study was to analyze the relationship between tumor angiogenesis in glioblastomas in association with MMP-9 immunoexpression. The results were correlated with the Ki-67 proliferation index, p53 immunoexpression, and the mutational status of IDH1 and ATRX, as well as MRI imaging data. This retrospective study included forty-four patients diagnosed with glioblastoma at the Department of Pathology, Târgu Mureș County Emergency Clinical Hospital. MMP-9 immunoexpression was observed in approximately half of the cases, more frequently in patients over 65 years old. Comparing the imaging data with the immunohistochemical results, we observed that the median tumor volume was higher in glioblastomas with IDH1 and p53 mutations, ATRX wild-type status, negative MMP-9 expression, and high Ki-67 proliferation indexes. The median values of MVD-CD34 and MVD-CD105 were higher in cases with extensive peritumoral edema in the contralateral hemisphere. Additionally, ATRX mutations were frequently associated with a more pronounced deviation of the median structures. To statistically validate the associations between MRI and the histopathological features of glioblastomas, further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (T.-C.S.); (L.K.); (Z.P.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Kövecsi Attila
- Pathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (T.-C.S.); (L.K.); (Z.P.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (A.B.); (R.C.)
- Neurosurgery Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Rareș Chinezu
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (A.B.); (R.C.)
- Neurosurgery Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Beáta Ágota Baróti
- Radiology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania;
- Radiology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (T.-C.S.); (L.K.); (Z.P.)
| |
Collapse
|
7
|
Kumawat C, Takahashi T, Date I, Tomita Y, Tanaka M, Arataki S, Komatsubara T, Flores AOP, Yu D, Jain M. State-of-the-Art and New Treatment Approaches for Spinal Cord Tumors. Cancers (Basel) 2024; 16:2360. [PMID: 39001422 PMCID: PMC11240441 DOI: 10.3390/cancers16132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Spinal cord tumors, though rare, present formidable challenges in clinical management due to their intricate nature. Traditional treatment modalities like surgery, radiation therapy, and chemotherapy have been the mainstay for managing these tumors. However, despite significant advancements, challenges persist, including the limitations of surgical resection and the potential side effects associated with radiation therapy. In response to these limitations, a wave of innovative approaches is reshaping the treatment landscape for spinal cord tumors. Advancements in gene therapy, immunotherapy, and targeted therapy are offering groundbreaking possibilities. Gene therapy holds the potential to modify the genes responsible for tumor growth, while immunotherapy harnesses the body's own immune system to fight cancer cells. Targeted therapy aims to strike a specific vulnerability within the tumor cells, offering a more precise and potentially less toxic approach. Additionally, novel surgical adjuncts are being explored to improve visualization and minimize damage to surrounding healthy tissue during tumor removal. These developments pave the way for a future of personalized medicine for spinal cord tumors. By delving deeper into the molecular makeup of individual tumors, doctors can tailor treatment strategies to target specific mutations and vulnerabilities. This personalized approach offers the potential for more effective interventions with fewer side effects, ultimately leading to improved patient outcomes and a better quality of life. This evolving landscape of spinal cord tumor management signifies the crucial integration of established and innovative strategies to create a brighter future for patients battling this complex condition.
Collapse
Affiliation(s)
- Chetan Kumawat
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
- Department of Orthopedic Surgery, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110060, India
| | - Toshiyuki Takahashi
- Spinal Disorder Center, Fujieda Heisei Memorial Hospital, 123-1 Mizuue Fujieda, Shizuoka 426-8662, Japan
| | - Isao Date
- Department of Neurosurgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Yousuke Tomita
- Department of Neurosurgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Masato Tanaka
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Shinya Arataki
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Angel O P Flores
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Dongwoo Yu
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Mukul Jain
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| |
Collapse
|
8
|
Nguyen H, Schubert KE, Pohling C, Chang E, Yamamoto V, Zeng Y, Nie Y, Van Buskirk S, Schulte RW, Patel CB. Impact of glioma peritumoral edema, tumor size, and tumor location on alternating electric fields (AEF) therapy in realistic 3D rat glioma models: a computational study. Phys Med Biol 2024; 69:085015. [PMID: 38417178 DOI: 10.1088/1361-6560/ad2e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX, 76706, United States of America
| | | | - Christoph Pohling
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Edwin Chang
- Stanford University, Stanford, CA, 94305, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA, 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE, 19716, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX, 78249, United States of America
| | | | - Chirag B Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, United States of America
| |
Collapse
|
9
|
Mendes CB, da Rocha LS, de Carvalho Fraga CA, Ximenes-da-Silva A. Homeostatic status of thyroid hormones and brain water movement as determinant factors in biology of cerebral gliomas: a pilot study using a bioinformatics approach. Front Neurosci 2024; 18:1349421. [PMID: 38476871 PMCID: PMC10927765 DOI: 10.3389/fnins.2024.1349421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction The expression and localization of the water channel transporters, aquaporins (AQPs), in the brain are substantially modified in gliomas during tumorigenesis, cell migration, edema formation, and resolution. We hypothesized that the molecular changes associated with AQP1 and AQP4 in the brain may potentially be anticancer therapeutic targets. To test this hypothesis, a bioinformatics analysis of publicly available data from international consortia was performed. Methods We used RNA-seq as an experimental strategy and identified the number of differential AQP1 and AQP4 transcript expressions in glioma tissue compared to normal brain tissue. Results AQPs genes are overexpressed in patients with glioma. Among the glioma subtypes, AQP1 and AQP4 were overexpressed in astrocytoma (low-grade glioma) and classical (high-grade glioma). Overall survival analysis demonstrated that both AQP genes can be used as prognostic factors for patients with low-grade glioma. Additionally, we observed a correlation between the expression of genes involved in the tyrosine and thyroid hormone pathways and AQPs, namely: PNMT, ALDH1A3, AOC2, HGDATP1B1, ADCY5, PLCB4, ITPR1, ATP1A3, LRP2, HDAC1, MED24, MTOR, and ACTB1 (Spearman's coefficient = geq 0.20 and p-value = ≤ 0.05). Conclusion Our findings indicate that the thyroid hormone pathways and AQPs 1 and 4 are potential targets for new anti-tumor drugs and therapeutic biomarkers for malignant gliomas.
Collapse
Affiliation(s)
- Carmelita Bastos Mendes
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Lanni Sarmento da Rocha
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | | | - Adriana Ximenes-da-Silva
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
10
|
Liao Y, Bai X, Cao Y, Zhang M. Effect of low-dose bevacizumab on health-related quality of life in patients with recurrent high-grade glioma: A retrospective clinical study. J Clin Neurosci 2024; 120:196-203. [PMID: 38277995 DOI: 10.1016/j.jocn.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND We retrospectively analyzed the effects of low-dose bevacizumab (BEV) combined with temozolomide (TMZ) on health-related quality of life (HRQL) in patients with recurrent high-grade glioma (rHGG). METHODS A total of 129 patients with rHGG were included in this study. Patients were divided into a combination group and TMZ group based on the treatment they received. The Quality of Life Questionnaire Core 30 (QLQ-C30) and EORTC Brain Cancer Module (QLQ-BN20) were used to evaluate HRQL in all patients before and after treatment. Categorical variables were compared using the chi-squared test. The data for all continuous variables were first tested for a normal distribution. If the data conformed to a normal distribution, a T test was used for comparison. If the data did not conform to a normal distribution, the rank-sum test was used. RESULTS There were differences in PFS and PFS-6 between the BEV + TMZ and TMZ groups (P<0.05). However, there was no difference in the OS between the two groups (P>0.05). The BEV + TMZ group performed better than the TMZ group in both the QLQ-C30 and QLQ-BN20. In addition, the KPS score was higher in the BEV + TMZ group than in the TMZ group. Steroid doses given were lower in the BEV + TMZ group than in the TMZ group (P < 0.05). CONCLUSIONS Low-dose BEV + TMZ can relieve the clinical symptoms of rHGG patients, reduce their steroid dose, improve HRQL, and prolong PFS, but does not bear any benefit on OS.
Collapse
Affiliation(s)
- Yonghong Liao
- Neurosurgery of The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xuexue Bai
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yiyao Cao
- Neurosurgery of The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Maoying Zhang
- Neurosurgery of The First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Shirokov A, Blokhina I, Fedosov I, Ilyukov E, Terskov A, Myagkov D, Tuktarov D, Tzoy M, Adushkina V, Zlatogosrkaya D, Evsyukova A, Telnova V, Dubrovsky A, Dmitrenko A, Manzhaeva M, Krupnova V, Tuzhilkin M, Elezarova I, Navolokin N, Saranceva E, Iskra T, Lykova E, Semyachkina-Glushkovskaya O. Different Effects of Phototherapy for Rat Glioma during Sleep and Wakefulness. Biomedicines 2024; 12:262. [PMID: 38397864 PMCID: PMC10886766 DOI: 10.3390/biomedicines12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
There is an association between sleep quality and glioma-specific outcomes, including survival. The critical role of sleep in survival among subjects with glioma may be due to sleep-induced activation of brain drainage (BD), that is dramatically suppressed in subjects with glioma. Emerging evidence demonstrates that photobiomodulation (PBM) is an effective technology for both the stimulation of BD and as an add-on therapy for glioma. Emerging evidence suggests that PBM during sleep stimulates BD more strongly than when awake. In this study on male Wistar rats, we clearly demonstrate that the PBM course during sleep vs. when awake more effectively suppresses glioma growth and increases survival compared with the control. The study of the mechanisms of this phenomenon revealed stronger effects of the PBM course in sleeping vs. awake rats on the stimulation of BD and an immune response against glioma, including an increase in the number of CD8+ in glioma cells, activation of apoptosis, and blockage of the proliferation of glioma cells. Our new technology for sleep-phototherapy opens a new strategy to improve the quality of medical care for patients with brain cancer, using promising smart-sleep and non-invasive approaches of glioma treatment.
Collapse
Affiliation(s)
- Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Egor Ilyukov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Dmitry Myagkov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Dmitry Tuktarov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Daria Zlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Arina Evsyukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Alexander Dubrovsky
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (E.I.); (D.M.); (D.T.); (M.T.); (A.D.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Inna Elezarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia
| | - Elena Saranceva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Tatyana Iskra
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Ekaterina Lykova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
| | - Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.B.); (A.T.); (V.A.); (D.Z.); (A.E.); (V.T.); (A.D.); (M.M.); (V.K.); (M.T.); (I.E.); (N.N.); (E.S.); (T.I.); (E.L.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| |
Collapse
|
12
|
von Reppert M, Ramakrishnan D, Brüningk SC, Memon F, Abi Fadel S, Maleki N, Bahar R, Avesta AE, Jekel L, Sala M, Lost J, Tillmanns N, Kaur M, Aneja S, Fathi Kazerooni A, Nabavizadeh A, Lin M, Hoffmann KT, Bousabarah K, Swanson KR, Haas-Kogan D, Mueller S, Aboian MS. Comparison of volumetric and 2D-based response methods in the PNOC-001 pediatric low-grade glioma clinical trial. Neurooncol Adv 2024; 6:vdad172. [PMID: 38221978 PMCID: PMC10785766 DOI: 10.1093/noajnl/vdad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods. Methods An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images. Results There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, P = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, P = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD. Conclusions Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.
Collapse
Affiliation(s)
- Marc von Reppert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neuroradiology, Leipzig University Hospital, Leipzig, Germany
| | - Divya Ramakrishnan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sarah C Brüningk
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Fatima Memon
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sandra Abi Fadel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nazanin Maleki
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ryan Bahar
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arman E Avesta
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neuroradiology, Harvard Medical School—Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leon Jekel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- University of Duisburg-Essen, Essen, Germany
| | - Matthew Sala
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Jan Lost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Niklas Tillmanns
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Manpreet Kaur
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Ludwig Maximilian University, Munich, Germany
| | - Sanjay Aneja
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Outcomes Research and Evaluation (CORE), Yale School of Medicine, New Haven, Connecticut, USA
| | - Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Visage Imaging, Inc., San Diego, California, USA
| | | | | | - Kristin R Swanson
- Mathematical Neuro-Oncology Lab, Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, USA
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery, and Pediatrics, UCSF, San Francisco, California, USA
- Children’s University Hospital Zürich, Zürich, Switzerland
| | - Mariam S Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|