1
|
Cao X, Li J, Liu S, Liu A, Zhang L, Chen F, Li Y, Ma H, Sun W, Ouyang S, Dai L, Liu J. Plasma IgG and IgM autoantibodies to COPT1 as potential biomarkers for detection of non-small cell lung cancer. Front Immunol 2025; 16:1455095. [PMID: 40292291 PMCID: PMC12021867 DOI: 10.3389/fimmu.2025.1455095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background Early diagnosis of lung cancer is crucial for improving patient outcomes. Autoantibodies against tumor-associated antigens (TAAs) found in the plasma can serve as biomarkers for lung cancer detection. Copper transporter 1 (COPT1) is abnormally expressed in several cancers including lung cancer. The purpose of this study is to explore the significance of anti-COPT1 autoantibodies in the clinical diagnosis of non-small cell lung cancer (NSCLC). Methods The expression level of COPT1 in NSCLC and normal tissues was analyzed based on TCGA and the Human Protein Atlas (HPA) database. Through enzyme-linked immunosorbent assay (ELISA), the expression levels of anti-COPT1 autoantibodies in plasma samples from normal controls (NC), patients with benign pulmonary nodules (BPN), and patients with NSCLC were detected in the discovery (89 NC and 89 NSCLC) and verification (321 NC, 321 BPN and 321 NSCLC) groups. The ELISA results were verified by western blotting and indirect immunofluorescence experiments. Results Based on HPA and TCGA databases, the mRNA and protein levels of COPT1 were higher in NSCLC tissues than in normal tissues. The levels of anti-COPT1-IgG and anti-COPT1-IgM autoantibodies were significantly higher in patients with NSCLC (P<0.05). Anti-COPT1-IgG and anti-COPT1-IgM could discriminate NSCLC from NC with area under the curve (AUC) values of 0.733 (95% CI: 0.694-0.771) and 0.679 (95% CI: 0.638-0.720), respectively. Additionally, the combination of anti-COPT1-IgG, anti-COPT1-IgM, and carcinoembryonic antigen (CEA) could enhance the efficacy of NSCLC diagnosis from BPN with increased AUC values. Conclusions Our study indicated the potential significance of anti-COPT1-IgG and anti-COPT1-IgM autoantibodies as novel biomarkers for the detection of NSCLC. Furthermore, the combination of anti-COPT1-IgG and anti-COPT1-IgM improved the diagnostic value.
Collapse
Affiliation(s)
- Xiaobin Cao
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Beijing Genomics Institution (BGI) College, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Siyu Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Beijing Genomics Institution (BGI) College, Zhengzhou University, Zhengzhou, China
| | - Aichen Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Lulu Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Fengqi Chen
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- Beijing Genomics Institution (BGI) College, Zhengzhou University, Zhengzhou, China
| | - Hanke Ma
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Wenke Sun
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine in the First Affiliated hospital, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Xu JX, Ma LJ, Tu LY, Tang QS, Wu B, Jiang LH. The Effect of Cuproptosis-Related Proteins on Macrophage Polarization in Mesothelioma is Revealed by scRNA-seq. Biol Trace Elem Res 2025; 203:1898-1908. [PMID: 39177724 PMCID: PMC11920352 DOI: 10.1007/s12011-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
High invasiveness mesothelioma is a malignant tumor of the peritoneum or pleura. The effect of cuproptosis on mesothelioma (MESO) is still unknown, though. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets were used to identify differential genes linked to cuproptosis in mesothelioma. Multigene features were then created to assess the course of the disease. Use single-cell data and in vitro validation to uncover crucial gene regulation mechanisms. In MESO, we found nine differentially expressed genes linked to cuproptosis. Using univariate Cox and LASSO regression techniques, a 3-gene feature (P < 0.05) was created, showing a good predictive potential for survival time. According to the risk score, patients in the low-risk subset had a considerably greater survival rate than those in the high-risk subset (P = 0). The similar survival pattern and prediction performance are also seen in the validation queue. The findings of the drug sensitivity research indicate that in high-risk patients, vinblastine, paclitaxel, gefitinib, and erlotinib are sensitive medications (P < 0.05). Classical monocytes were identified as core cells connected to cuproptosis by the CellChat results. SLC31A1 is implicated in the positive regulation of M2 macrophage polarization, according to cell subtype analysis and in vitro confirmation. Genes linked to cuproptosis have a major influence on tumor immunity and can predict how MESO will progress.
Collapse
Affiliation(s)
- Jia-Xin Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li-Jing Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Li-Ying Tu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Qi-Sheng Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Bian Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China.
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Li-Hong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China.
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Wang J, Zhao X, Han B, Meng K, Gao L. The up-regulation of PTBP1 expression level in patients with Insomnia by senile dementia and promote cuproptosis of nerve cell by SLC31A1. Sleep Med 2025; 128:206-218. [PMID: 39985973 DOI: 10.1016/j.sleep.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD), often referred to as the modern-day scourge, stands as a significant health challenge characterized by high rates of disability and mortality, particularly among the geriatric population. Thus, the present study investigated the precise details of PTBP1 involvement in cuproptosis of nerve cell of patients with Insomnia by senile dementia (ISD). Patients with ISD, early mild cognitive impairment (EMCI) and Normal healthy volunteers were obtained. In the context of ISD, the elevated PTBP1 mRNA expressions were observed in patient samples, correlating positively with diminished cognitive function as measured by the Mini-Mental State Examination (MMSE) and increased geriatric depression scale scores. The pivotal role of PTBP1 was further underscored by its inhibitory effects in a mice model, which prevented the development of senile dementia, and its influence on neuronal cell proliferation and ROS-induced oxidative stress in vitro. Additionally, PTBP1's regulatory capacity on the cuproptosis of nerve cells and its modulation of SLC31A1 expression, through effects on ubiquitination, were revealed. The stability of PTBP1, critical for its function, was enhanced by the m6A modification mediated by METTL3, highlighting a complex regulatory network in the pathogenesis of ISD. These data confirmed that PTBP1 plays a pivotal role in promoting the oxidative response and cuproptosis in Alzheimer's disease models via the SLC31A1 pathway. The findings suggest that PTBP1 could serve as a potential biomarker for the diagnosis and prognostic evaluation of ISD and AD, paving the way for the development of novel therapeutic strategies targeting this protein.
Collapse
Affiliation(s)
- Jing Wang
- Department of Psychiatry, Shanxi Provincial People's Hospital, Taiyuan, 030012, China.
| | - Xiaoli Zhao
- Department of Geriatrics, Xi'an No. 1 Hospital, Xi'an, 710002, China
| | - Bin Han
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Kun Meng
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Lan Gao
- Department of Clinical Psychological, Beijing Huilognguan Hospital, Beijing, 100096, China
| |
Collapse
|
4
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
5
|
Li Y, Yu Z. Pan-cancer analysis reveals copper transporters as promising potential targets. Heliyon 2024; 10:e37007. [PMID: 39281483 PMCID: PMC11402228 DOI: 10.1016/j.heliyon.2024.e37007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Copper transport proteins (SLC31A1, ATP7A, ATP7B) regulate copper levels in the body and may be involved in tumor development. However, their comprehensive expression and function across various cancers remain unclear. Methods The expressions of copper transporters in 33 tumors and normal tissues were analyzed using TCGA, GTEx, CCLE, ULCAN, and HPA databases. Cox regression assessed their impact on patient survival. Gene alterations were explored using cBioPortal. Spearman correlation tests were performed to investigate the associations between copper transporters and tumor mutation burden (TMB), microsatellite instability (MSI), and infiltration of immune cells. Gene functions were analyzed using STRING and GeneMANIA databases. Drug sensitivity was assessed using GSCALite database. ATP7B expression in lung squamous cell carcinoma (LUSC) was validated by immunohistochemical staining. Results Copper transporters exhibited variable expression patterns across various cancer types, indicating their potential dual role as either oncogenes or tumor suppressor genes, depending on the cancer type. Significant associations were found between these transporters and tumor stage, as well as prognosis in most tumors studied. Pathway analysis identified links between copper transporters and tumor-related pathways like apoptosis and RAS/MAPK. Copy number variation (CNV) analysis revealed varying degrees of gene amplification and deletion of copper transporters in most tumors. Copper transporters exhibited strong correlations with immune features, including TMB, MSI, and immune-infiltrating cells, suggesting their potential role in guiding immunotherapy. They were also associated with sensitivity to various chemotherapeutic and immunotherapeutic drugs. Immunohistochemical tests validated the correlation between elevated ATP7B level and worse progression-free survival (PFS) in LUSC. Conclusion Copper transporters may serve as potential tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Yueqin Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Yu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
7
|
Tigu AB, Tomuleasa C. Exploring Novel Frontiers in Cancer Therapy. Biomedicines 2024; 12:1345. [PMID: 38927551 PMCID: PMC11202039 DOI: 10.3390/biomedicines12061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer progression and initiation are sustained by a series of alterations in molecular pathways because of genetic errors, external stimuli and other factors, which lead to an abnormal cellular function that can be translated into uncontrolled cell growth and metastasis [...].
Collapse
Affiliation(s)
- Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Feng R, Li H, Meng T, Fei M, Yang C. Bioinformatics analysis and experimental validation of m6A and cuproptosis-related lncRNA NFE4 in clear cell renal cell carcinoma. Discov Oncol 2024; 15:187. [PMID: 38797784 PMCID: PMC11128431 DOI: 10.1007/s12672-024-01023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aimed to construct an m6A and cuproptosis-related long non-coding RNAs (lncRNAs) signature to accurately predict the prognosis of kidney clear cell carcinoma (KIRC) patients using the information acquired from The Cancer Genome Atlas (TCGA) database. METHODS First, the co-expression analysis was performed to identify lncRNAs linked with N6-methyladenosine (m6A) and cuproptosis in ccRCC. Then, a model encompassing four candidate lncRNAs was constructed via univariate, least absolute shrinkage together with selection operator (LASSO), and multivariate regression analyses. Furthermore, Kaplan-Meier, principal component, functional enrichment annotation, and nomogram analyses were performed to develop a risk model that could effectively assess medical outcomes for ccRCC cases. Moreover, the cellular function of NFE4 in Caki-1/OS-RC-2 cultures was elucidated through CCK-8/EdU assessments and Transwell experiments. Dataset outcomes indicated that NFE4 can have possible implications in m6A and cuproptosis, and may promote ccRCC progression. RESULTS We constructed a panel of m6A and cuproptosis-related lncRNAs to construct a prognostic prediction model. The Kaplan-Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. Furthermore, the m6A and cuproptosis-related lncRNA model indicated higher diagnostic efficiency than other clinical features. Moreover, the NFE4 function analysis indicated a gene associated with m6A and cuproptosis-related lncRNAs in ccRCC. It was also revealed that the proliferation and migration of Caki-1 /OS-RC-2 cells were inhibited in the NFE4 knockdown group. CONCLUSION Overall, this study indicated that NFE4 and our constructed risk signature could predict outcomes and have potential clinical value.
Collapse
Affiliation(s)
- Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Haolin Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Mingtian Fei
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Qiu Z, Liu Q, Wang L, Xiong Y, Wu J, Wang M, Yan X, Deng H. The copper transporter, SLC31A1, transcriptionally activated by ELF3, imbalances copper homeostasis to exacerbate cisplatin-induced acute kidney injury through mitochondrial dysfunction. Chem Biol Interact 2024; 393:110943. [PMID: 38462020 DOI: 10.1016/j.cbi.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Acute kidney injury (AKI) is a common complication of cisplatin chemotherapy, which greatly limits its clinical effect and application. This study explored the function of solute Carrier Family 31 Member 1 (SLC31A1) in cisplatin-induced AKI and its possible mechanism. Mice and HK-2 cells were exposed to cisplatin to establish the in vivo and in vitro AKI models. Cell viability was detected by CCK-8. Mitochondrial and oxidative damage was determined by Mito-Tracker Green staining, mtROS level, ATP production, mitochondrial membrane potential, MDA content and CAT activity. AKI was evaluated by renal function and histopathological changes. Apoptosis was detected by TUNEL and caspase-3 expression. Molecule expression was measured by RT-qPCR, Western blotting, and immunohistochemistry. Molecular mechanism was studied by luciferase reporter assay and ChIP. SLC31A1 level was predominantly increased by cisplatin exposure in AKI models. Notably, copper ion (Cu+) level was enhanced by cisplatin challenge. Moreover, Cu+ supplementation intensified cisplatin-induced cell death, mitochondrial dysfunction, and oxidative stress in HK-2 cells, indicating the involvement of cuproptosis in cisplatin-induced AKI, whereas these changes were partially counteracted by SLC31A1 knockdown. E74 like ETS transcription factor 3 (ELF3) could directly bind to SLC31A1 promoter and promote its transcription. ELF3 was up-regulated and positively correlated with SLC31A1 expression upon cisplatin-induced AKI. SLC31A1 silencing restored renal function, alleviated mitochondrial dysfunction, and apoptosis in cisplatin-induced AKI mice. ELF3 transcriptionally activated SLC31A1 to trigger cuproptosis that drove cisplatin-induced AKI through mitochondrial dysfunction, indicating that SLC31A1 might be a promising therapeutic target to mitigate AKI during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Zhimin Qiu
- General Department of Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, China
| | - Qicen Liu
- Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China
| | - Ling Wang
- Department of Nursing, Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yingfen Xiong
- Department of Anaesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Juan Wu
- Department of Preventive Health Care, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, China
| | - Meijian Wang
- General Department of Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, China
| | - Xiluan Yan
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, China
| | - Huangying Deng
- General Department of Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, China.
| |
Collapse
|
10
|
Gorostiola González M, Rakers PRJ, Jespers W, IJzerman AP, Heitman LH, van Westen GJP. Computational Characterization of Membrane Proteins as Anticancer Targets: Current Challenges and Opportunities. Int J Mol Sci 2024; 25:3698. [PMID: 38612509 PMCID: PMC11011372 DOI: 10.3390/ijms25073698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Pepijn R. J. Rakers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Willem Jespers
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Adriaan P. IJzerman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| | - Laura H. Heitman
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
- Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (M.G.G.); (P.R.J.R.); (W.J.); (A.P.I.); (L.H.H.)
| |
Collapse
|