1
|
Elman I. Treatments for weight gain in schizophrenia. Curr Opin Psychiatry 2025; 38:159-168. [PMID: 40009761 DOI: 10.1097/yco.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW Obesity and related metabolic disorders are extremely common in psychiatric patients, particularly in those with schizophrenia. Elucidating this link's neurobiology may inform clinicians and researchers of rational therapeutic approaches necessary to optimize clinical outcomes. RECENT FINDINGS Current literature highlights the pivotal role of the inflammation-oxidative stress-insulin resistance loop in the pathophysiology of both metabolic and neuropsychiatric disorders. The concept of 'diabetophrenia' is put forward to highlight the overlapping neurobiological mechanisms underlying metabolic dysfunction and schizophrenia symptoms. Innovative treatments, including the combination of xanomeline with trospium and incretin-based medicines, demonstrate encouraging potential in addressing such complex health challenges. SUMMARY The nuanced dynamics of chronic inflammation and psychiatric symptomatology underscore the significance of addressing both metabolic and mental health factors in a cohesive fashion while considering unique psychosocial contexts, dietary preferences, and lifestyle choices. A multidisciplinary strategy is essential for incorporating counseling, dietary interventions, behavioral therapies, and pharmacotherapy into the management of schizophrenia. The ensuing enhanced collaboration among healthcare professionals may render obsolete the prevailing siloed conceptualizations of mental disorders, opening new vistas for generating synergistic insights into the mind-body systems and leading to improved health and quality of life for patients with schizophrenia and other psychiatric conditions.
Collapse
Affiliation(s)
- Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Morsy MM, Azzam AY, Mirdad MT, Abadi AM, Alqahtani SAM, Abukhadijah HJ, Elamin O, Morsy MD, Altschul DJ. Bromocriptine for Idiopathic Intracranial Hypertension: A Retrospective Multicenter Cohort Study. Int J Gen Med 2025; 18:1933-1943. [PMID: 40201930 PMCID: PMC11977546 DOI: 10.2147/ijgm.s512250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/30/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Idiopathic Intracranial Hypertension (IIH) is a disorder characterized by elevated intracranial pressure without an identifiable cause, commonly affecting young obese women. Current treatment strategies, including weight loss, acetazolamide, and surgical interventions, have limitations due to side effects, adherence challenges, and potential complications. Bromocriptine, a dopamine D2 receptor agonist, has emerged as a potential novel therapy due to its metabolic effects. This study aims to evaluate the safety and efficacy of bromocriptine in IIH management through a retrospective cohort analysis. Methods A retrospective analysis was conducted, focusing on patients with IIH. Propensity score matching was applied to balance baseline characteristics, including age, sex, race, and BMI, between the bromocriptine and control groups. Key outcome measures, papilledema, headache severity, refractory IIH status, and acetazolamide dose dependency, were assessed at multiple follow-up intervals. Results The bromocriptine group demonstrated significant improvement in papilledema and headache severity over 24 months, with early effects observed at one month. There was a marked reduction in refractory IIH (30.66% lower incidence at 24 months, p<0.0001) and reduced dependency on acetazolamide from three months onward (p=0.0246). The safety profile was favorable, with comparable adverse event rates to controls, although allergic skin reactions were noted in the bromocriptine group. Conclusion Bromocriptine shows promise as an effective and safe therapeutic option for IIH, with sustained improvement in clinical parameters and reduced reliance on conventional treatment. Future randomized controlled trials are needed to confirm these findings and explore optimal dosing strategies.
Collapse
Affiliation(s)
- Mahmoud M Morsy
- October 6 University Hospital, October 6 University, Giza, Egypt
| | - Ahmed Y Azzam
- October 6 University Hospital, October 6 University, Giza, Egypt
| | | | - Alsaleem Mohammed Abadi
- Family and Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Osman Elamin
- Department of Jordan Hospital Neurosurgery, Amman, Jordan
| | - Mohamed D Morsy
- Department of Clinical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - David J Altschul
- Montefiore-Einstein Cerebrovascular Research Lab, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Olasore HSA, Faleti JO, Afe TO, Murtala AA, Olawale MO, Awesu ARB, Igwo-Ezikpe MN, Magbagbeola OA, Olashore AA. Dopamine receptor D2 (DRD2) TaqIA gene polymorphism and acute risperidone-induced changes in body weight, plasma glucose and lipid profile. Schizophr Res 2025; 277:171-176. [PMID: 40073616 DOI: 10.1016/j.schres.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
There are indications that the transient blockade of the dopamine receptor D2 (DRD2) by atypical antipsychotics such as risperidone is related to their metabolic side effects. We, therefore, examined the relationship between TaqIA polymorphism of the DRD2 gene and acute risperidone-induced metabolic changes. We recruited 153 newly diagnosed patients with psychotic disorders (71 males and 82 females) from the Federal Neuropsychiatric Hospital, Yaba, Lagos, Nigeria. Body weight, fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TChol), low-density lipoprotein cholesterol (LDLChol), and high-density lipoprotein cholesterol (LDLChol) were all determined at baseline and the end of 6 weeks of administration of risperidone (2 mg twice daily). DNA was also extracted from peripheral blood, and genotyping was carried out using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The relationship between the mean changes in the metabolic indices and the DRD2 TaqIA genotype was statistically determined. The frequencies of the A1A1, A1A2, and A2A2 were 0.229, 0.412, and 0.360, respectively. However, the population was not in Hardy-Weinberg equilibrium (χ2 = 4.023, p < 0.01). The mean weight change and the mean changes in FBG, TG, TChol, and LDLChol were significantly (p < 0.05) higher among participants with the A1A1 genotype, followed by the heterozygous (A1A2) participants and lowest among those homozygous for the A2 allele. However, there was no significant difference in the mean change in HDLChol across all genotype groups. The DRD2 TaqIA1 allele is associated with higher risperidone-induced weight gain and metabolic changes among Nigerians.
Collapse
Affiliation(s)
- Holiness S A Olasore
- Department of Biochemistry, College of Medicine of the University of Lagos, Idi-Araba Campus, Lagos, Nigeria.
| | - Joseph O Faleti
- Department of Biochemistry, College of Medicine of the University of Lagos, Idi-Araba Campus, Lagos, Nigeria
| | - Taiwo O Afe
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Ogun State, Nigeria
| | - Abdullahi A Murtala
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Ogun State, Nigeria
| | - Matthew O Olawale
- Department of Biochemistry, College of Medicine of the University of Lagos, Idi-Araba Campus, Lagos, Nigeria
| | | | - Miriam N Igwo-Ezikpe
- Department of Biochemistry, College of Medicine of the University of Lagos, Idi-Araba Campus, Lagos, Nigeria
| | - Olubunmi A Magbagbeola
- Department of Biochemistry, College of Medicine of the University of Lagos, Idi-Araba Campus, Lagos, Nigeria
| | | |
Collapse
|
4
|
Speranza L, Miniaci MC, Volpicelli F. The Role of Dopamine in Neurological, Psychiatric, and Metabolic Disorders and Cancer: A Complex Web of Interactions. Biomedicines 2025; 13:492. [PMID: 40002905 PMCID: PMC11853172 DOI: 10.3390/biomedicines13020492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Dopamine, a key neurotransmitter in the central nervous system, is essential for regulating a wide range of physiological processes, including motor control, reward processing, mood regulation, and decision-making [...].
Collapse
Affiliation(s)
| | | | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (M.C.M.)
| |
Collapse
|
5
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Meca AD, Boboc IKS, Mititelu-Tartau L, Bogdan M. Unlocking the Potential: Semaglutide's Impact on Alzheimer's and Parkinson's Disease in Animal Models. Curr Issues Mol Biol 2024; 46:5929-5949. [PMID: 38921025 PMCID: PMC11202139 DOI: 10.3390/cimb46060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Semaglutide (SEM), a glucagon-like peptide-1 receptor agonist, has garnered increasing interest for its potential therapeutic effects in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). This review provides a comprehensive description of SEM's mechanism of action and its effects in preclinical studies of these debilitating conditions. In animal models of AD, SEM has proved beneficial effects on multiple pathological hallmarks of the disease. SEM administration has been associated with reductions in amyloid-beta plaque deposition and mitigation of neuroinflammation. Moreover, SEM treatment has been shown to ameliorate behavioral deficits related to anxiety and social interaction. SEM-treated animals exhibit improvements in spatial learning and memory retention tasks, as evidenced by enhanced performance in maze navigation tests and novel object recognition assays. Similarly, in animal models of PD, SEM has demonstrated promising neuroprotective effects through various mechanisms. These include modulation of neuroinflammation, enhancement of mitochondrial function, and promotion of neurogenesis. Additionally, SEM has been shown to improve motor function and ameliorate dopaminergic neuronal loss, offering the potential for disease-modifying treatment strategies. Overall, the accumulating evidence from preclinical studies suggests that SEM holds promise as a novel therapeutic approach for AD and PD. Further research is warranted to elucidate the underlying mechanisms of SEM's neuroprotective effects and to translate these findings into clinical applications for the treatment of these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| |
Collapse
|
7
|
Lapmanee S, Bhubhanil S, Wongchitrat P, Charoenphon N, Inchan A, Ngernsutivorakul T, Dechbumroong P, Khongkow M, Namdee K. Assessing the Safety and Therapeutic Efficacy of Cannabidiol Lipid Nanoparticles in Alleviating Metabolic and Memory Impairments and Hippocampal Histopathological Changes in Diabetic Parkinson's Rats. Pharmaceutics 2024; 16:514. [PMID: 38675175 PMCID: PMC11054774 DOI: 10.3390/pharmaceutics16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic Parkinson's disease (DP) is a progressive neurodegenerative disease with metabolic syndrome that is increasing worldwide. Emerging research suggests that cannabidiol (CBD) is a neuropharmacological compound that acts against this disease, especially CBD in nano-formulation. The safety of cannabidiol lipid nanoparticles (CBD-LNP) was evaluated by assessing in vitro cytotoxicity in neurons and therapeutic outcomes in a DP animal model, including metabolic parameters and histopathology. CBD-LNPs were fabricated by using a microfluidization technique and showed significantly lower cytotoxicity than the natural form of CBD. The DP rats were induced by streptozotocin followed by a 4-week injection of MPTP with a high-fat diet. Rats were treated orally with a vehicle, CBD, CBD-LNP, or levodopa for 4 weeks daily. As a result, vehicle-treated rats exhibited metabolic abnormalities, decreased striatal dopamine levels, and motor and memory deficits. CBD-LNP demonstrated reduced lipid profiles, enhanced insulin secretion, and restored dopamine levels compared to CBD in the natural form. CBD-LNP also had comparable efficacy to levodopa in ameliorating motor deficits and memory impairment in behavior tests. Interestingly, CBD-LNP presented migration of damaged neuronal cells in the hippocampus more than levodopa. These findings suggest that CBD-LNP holds promise as an intervention addressing both metabolic and neurodegenerative aspects of DP, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok 10160, Thailand; (S.L.); (S.B.)
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok 10160, Thailand; (S.L.); (S.B.)
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakon Pathom 73170, Thailand;
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Anjaree Inchan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | | | - Piroonrat Dechbumroong
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (P.D.); (M.K.)
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (P.D.); (M.K.)
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand; (P.D.); (M.K.)
| |
Collapse
|
8
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
9
|
Maiese K. Mitochondria, Mitophagy, Mitoptosis, and Programmed Cell Death: Implications from Aging to Cancer. Curr Neurovasc Res 2024; 21:1-5. [PMID: 38251666 DOI: 10.2174/1567202621999240118155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
|