1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Al-Kuraishy HM, Sulaiman GM, Mohsin MH, Mohammed HA, Dawood RA, Albuhadily AK, Al-Gareeb AI, Albukhaty S, Abomughaid MM. Targeting of AMPK/MTOR signaling in the management of atherosclerosis: Outmost leveraging. Int J Biol Macromol 2025; 309:142933. [PMID: 40203916 DOI: 10.1016/j.ijbiomac.2025.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Atherosclerosis (AS) is a chronic vascular disorder that is characterized by the thickening and narrowing of arteries due to the development of atherosclerotic plaques. The traditional risk factors involved in AS are obesity, type 2 diabetes (T2D), dyslipidemia, hypertension, and smoking. Furthermore, non-traditional risk factors for AS, such as inflammation, sleep disturbances, physical inactivity, air pollution, and alterations of gut microbiota, gained attention in relation to the pathogenesis of AS. Interestingly, the pathogenesis of AS, is complex and related to different abnormalities of cellular and sub-cellular signaling pathways. It has been illustrated that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (MTOR) pathways are involved in AS pathogenesis. Mounting evidence indicated that AMPK plays a critical role in attenuating the development of AS by activating autophagy, which is impaired during atherogenesis. AMPK has a vasculoprotective effect by reducing lipid accumulation, inflammatory cell proliferation, and the release of pro-inflammatory cytokines, as well as decreasing inflammatory cell adhesion to the vascular endothelium. AMPK activation by metformin inhibits the migration of vascular smooth muscle cells (VSMCs) and AS development. However, the MTOR pathway contributes to AS by inhibiting autophagy, highlighting autophagy as a crucial link between the AMPK and MTOR pathways in AS pathogenesis. The MTOR is a key inducer of endothelial dysfunction and is involved in the development of AS. Therefore, both the AMPK and MTOR pathways play a crucial role in the pathogenesis of AS. However, the exact role of AMPK and MTOR pathways in the pathogenesis of AS is not fully clarified. Therefore, this review aims to discuss the potential role of the AMPK/MTOR signaling pathway in AS, and how AMPK activators and MTOR inhibitors influence the development and progression of AS. In conclusion, AMPK activators and MTOR inhibitors have vasculoprotective effects against the development and progression of AS.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Mayyadah H Mohsin
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Retaj A Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla 51001, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13 Kufa, Najaf, Iraq
| | | | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia
| |
Collapse
|
3
|
Sun X, Li C. Neural repair function of osteopontin in stroke and stroke‑related diseases (Review). Exp Ther Med 2024; 28:459. [PMID: 39478739 PMCID: PMC11523235 DOI: 10.3892/etm.2024.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Stroke, including hemorrhagic stroke and ischemic stroke, is a common disease of the central nervous system. It is characterized by a high mortality and disability rate and is closely associated with atherosclerosis, hypertension hyperglycemia, atrial fibrillation and unhealthy living habits. The continuous development of surgery and medications has decreased the mortality rate of patients with stroke and has greatly improved the disease prognosis. At present, the direction of clinical treatment and research has gradually shifted to the repair of nerve function after stroke. Osteopontin (OPN) is a widely distributed extracellular matrix protein. Due to its structural characteristics, OPN can be cut and modified into terminal fragments with different functions, which play different roles in various pathophysiological processes, such as formation of tumors, inflammation and autoimmune diseases. It has also become a potential diagnostic and therapeutic marker. In order to comprehensively analyze the specific role of OPN in nerve repair and its relationship with stroke and stroke-related diseases, the following key words were used: 'Osteopontin, stroke, atherosis, neuroplasticity, neural repair'. PubMed, Web of Science and Cochrane articles related to OPN were searched and summarized. The present review describes the OPN structure, isoforms, functions and its neural repair mechanism, and its association with the occurrence and development of stroke and related diseases was explored.
Collapse
Affiliation(s)
- Xin Sun
- Department of Neurosurgery, Yanbian University Affiliated Hospital, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Chunhao Li
- Department of Neurosurgery, Yanbian University Affiliated Hospital, Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
4
|
Shen Y, Yu C. The Bone-Vascular Axis: A Key Player in Chronic Kidney Disease Associated Vascular Calcification. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:545-557. [PMID: 39664335 PMCID: PMC11631106 DOI: 10.1159/000541280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/31/2024] [Indexed: 12/13/2024]
Abstract
Background The bone-vascular axis plays a key role in the pathogenesis of vascular calcification (VC) in patients with chronic kidney disease (CKD). Understanding and managing the role of the bone-vascular axis in CKD-mineral and bone disorder (CKD-MBD) is critical for preventing and treating associated complications, including osteoporosis, arterial calcification, and cardiovascular diseases. This study aimed to comprehensively summarize the role of bone metabolism markers in uremic VC. Summary The skeleton, as an endocrine organ, can regulate systemic metabolic processes by secreting various bioactive substances. These molecules can induce the transdifferentiation of vascular smooth muscle cells, promoting their transition to other functional states, thereby affecting vascular growth and remodeling. Key Messages The prevalence of VC in individuals with CKD is notably high. CKD-associated VC is characterized by the widespread accumulation of hydroxyapatite within the arterial media, which occurs as a result of the transformation of smooth muscle cells into osteoblastic smooth muscle cells under the influence of uremic toxins. Osteoblasts and osteoclasts in bone tissue secrete mineral metabolic proteins, which can influence neighboring cells, primarily vascular smooth muscle cells, through paracrine signaling. Both circulating and osteocytic sclerostin can exert a protective effect by inhibiting wingless/integrated (WNT)-induced calcification. The therapeutic goal for CKD-MBD is to reduce production of sclerostin by decreasing the osteogenic transdifferentiation of vascular smooth muscle cells. Calciprotein particles act as a physiological agent for delivering calcium-phosphate the bone and inducing fibroblast growth factor-23 expression in osteoblasts.
Collapse
Affiliation(s)
- Yingjing Shen
- Department of Nephrology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Torino C, Carbone F, Pizzini P, Mezzatesta S, D’Arrigo G, Gori M, Liberale L, Moriero M, Michelauz C, Frè F, Isoppo S, Gavoci A, Rosa FL, Scuricini A, Tirandi A, Ramoni D, Mallamaci F, Tripepi G, Montecucco F, Zoccali C. Osteopontin and Clinical Outcomes in Hemodialysis Patients. Biomedicines 2024; 12:2605. [PMID: 39595171 PMCID: PMC11592156 DOI: 10.3390/biomedicines12112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic kidney disease (CKD) and end-stage kidney disease (ESKD) are significant public health issues, with cardiovascular morbidity and mortality being the leading causes of death in hemodialysis patients. Osteopontin (OPN), a multifunctional glycoprotein, has emerged as a potential biomarker for vascular disease in CKD due to its role in inflammation, tissue remodeling, and calcification. METHODS This cohort study included 1124 hemodialysis patients from the PROGREDIRE study, a registry involving 35 dialysis units in Southern Italy. Serum osteopontin levels were measured using enzyme-linked immunosorbent assay (ELISA). The primary endpoints were all-cause and cardiovascular mortality. Multivariate Cox regression analyses were performed to assess the association between osteopontin levels and mortality, adjusting for traditional risk factors, biomarkers of inflammation, nutritional status, and ESKD-related factors. RESULTS During a mean follow-up of 2.8 years, 478 patients died, 271 from cardiovascular causes. Independent correlates of osteopontin included alkaline phosphatase and parathyroid hormone. Elevated osteopontin levels were significantly associated with increased all-cause mortality (HR 1.19, 95% CI 1.09-1.31, p < 0.001) and cardiovascular mortality (HR 1.22, 95% CI 1.08-1.38, p = 0.001) after adjusting for confounders. CONCLUSIONS Elevated osteopontin levels are associated with increased all-cause and cardiovascular mortality in hemodialysis patients. These findings implicate osteopontin in the high risk for death and cardiovascular disease in the hemodialysis population. Intervention studies are needed to definitively test this hypothesis.
Collapse
Affiliation(s)
- Claudia Torino
- Clinical Epidemiology of Renal Disease and Hypertension Unit, Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, 89124 Reggio Calabria, Italy; (C.T.); (P.P.); (S.M.); (G.D.); (F.M.); (G.T.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy
| | - Patrizia Pizzini
- Clinical Epidemiology of Renal Disease and Hypertension Unit, Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, 89124 Reggio Calabria, Italy; (C.T.); (P.P.); (S.M.); (G.D.); (F.M.); (G.T.)
| | - Sabrina Mezzatesta
- Clinical Epidemiology of Renal Disease and Hypertension Unit, Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, 89124 Reggio Calabria, Italy; (C.T.); (P.P.); (S.M.); (G.D.); (F.M.); (G.T.)
| | - Graziella D’Arrigo
- Clinical Epidemiology of Renal Disease and Hypertension Unit, Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, 89124 Reggio Calabria, Italy; (C.T.); (P.P.); (S.M.); (G.D.); (F.M.); (G.T.)
| | - Mercedes Gori
- CNR—Institute of Clinical Physiology, 00186 Rome, Italy;
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy
| | - Margherita Moriero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Cristina Michelauz
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Federica Frè
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Simone Isoppo
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Aurora Gavoci
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Federica La Rosa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Alessandro Scuricini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
| | - Francesca Mallamaci
- Clinical Epidemiology of Renal Disease and Hypertension Unit, Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, 89124 Reggio Calabria, Italy; (C.T.); (P.P.); (S.M.); (G.D.); (F.M.); (G.T.)
- Nephrology, Hypertension and Renal Transplantation Unit, Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Giovanni Tripepi
- Clinical Epidemiology of Renal Disease and Hypertension Unit, Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, 89124 Reggio Calabria, Italy; (C.T.); (P.P.); (S.M.); (G.D.); (F.M.); (G.T.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; (F.C.); (L.L.); (M.M.); (C.M.); (F.F.); (S.I.); (A.G.); (F.L.R.); (A.S.); (A.T.); (D.R.); (F.M.)
- IRCCS Ospedale Policlinico San Martino, Genoa-Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, NY 10065, USA
- IPNET, c/o Nefrologia del Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| |
Collapse
|
6
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
7
|
D'Arrigo G, Carbone F, Gori M, Torino C, Montecucco F, Liberale L, Ramoni D, Tirandi A, Tortorella C, Lisa A, Olivero C, Moriero M, Bertolotto M, Minetti S, Schiavetta E, Pizzini P, Cutrupi S, Mallamaci F, Tripepi G, Zoccali C. Osteopontin, death and cardiovascular events in stage G3-4 CKD patients: a joint model analysis. Nephrol Dial Transplant 2024; 39:1737-1739. [PMID: 38849311 DOI: 10.1093/ndt/gfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Graziella D'Arrigo
- Consiglio Nazionale delle Ricerche (CNR), Clinical Epidemiology of Renal Diseases and Hypertension Unit, Centro Fisiologia Clinica CNR, Reggio Calabria, Rome
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Mercedes Gori
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano
| | - Claudia Torino
- Consiglio Nazionale delle Ricerche (CNR), Clinical Epidemiology of Renal Diseases and Hypertension Unit, Centro Fisiologia Clinica CNR, Reggio Calabria, Rome
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Curzia Tortorella
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Anna Lisa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Chiara Olivero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Margherita Moriero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Silvia Minetti
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Elisa Schiavetta
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Patrizia Pizzini
- Consiglio Nazionale delle Ricerche (CNR), Clinical Epidemiology of Renal Diseases and Hypertension Unit, Centro Fisiologia Clinica CNR, Reggio Calabria, Rome
| | - Sebastiano Cutrupi
- Consiglio Nazionale delle Ricerche (CNR), Clinical Epidemiology of Renal Diseases and Hypertension Unit, Centro Fisiologia Clinica CNR, Reggio Calabria, Rome
| | - Francesca Mallamaci
- Consiglio Nazionale delle Ricerche (CNR), Clinical Epidemiology of Renal Diseases and Hypertension Unit, Centro Fisiologia Clinica CNR, Reggio Calabria, Rome
- Renal Research Institute, NY, USA
| | - Giovanni Tripepi
- Consiglio Nazionale delle Ricerche (CNR), Clinical Epidemiology of Renal Diseases and Hypertension Unit, Centro Fisiologia Clinica CNR, Reggio Calabria, Rome
| | - Carmine Zoccali
- Renal Research Institute, NY, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
8
|
Sorysz D, Dziewierz A, Gawlik K, Opalińska M, Sowa Staszczak A, Grochowska A, Malinowski KP, Maruszak N, Bagieński M, Dudek D. Temporal changes in biomarker levels and their association with the early degeneration stage of transcatheter aortic valves in 18F-fluorodeoxyglucose and 18F-sodium fluoride positron emission tomography studies. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2024; 20:329-337. [PMID: 39464587 PMCID: PMC11506396 DOI: 10.5114/aic.2024.142403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction As transcatheter aortic valve implantation (TAVI) indications expand, understanding the valve degeneration process and potential influencing biomarkers becomes increasingly important. Aim To investigate temporal changes in biomarker levels and their potential association with 18F-fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (18F-NaF) uptake, assessed using positron emission tomography/computed tomography (PET/CT) studies as markers for native aortic annulus calcifications and early-stage TAVI valve degeneration. Material and methods A total of 71 TAVI patients underwent blood sampling and transthoracic echocardiography at baseline (pre-TAVI) and 6, 12, 18, and 24 months after the procedure. PET/CT using 18F-NaF and 18F-FDG was performed at 6 and 24 months. Serum levels of matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-9 (MMP-9), and osteopontin (OPN) were measured. In addition, plasma levels of osteoprotegerin (OPG), lipoprotein a (Lp(a)), and oxidized LDL (ox-LDL) were assessed. Results Finally, 31 patients (median age: 84.0 years) completed the study. Valve function improved after TAVI and remained stable during follow-up. Over 24 months, OPN levels decreased (p = 0.010), while MMP-3 and MMP-9 levels increased (p = 0.046 and p = 0.041). MMP-3 and MMP-9 showed multiple positive correlations across time points. OPN, ox-LDL, and OPG demonstrated significant negative correlations with follow-up effective orifice area index and effective orifice area (EOA). No significant correlations were found between biomarkers and PET/CT uptake. Conclusions Significant biomarker changes over 24 months and negative correlations with EOA suggest potential roles in aortic valve function. However, no correlations between biomarkers and PET/CT results were observed.
Collapse
Affiliation(s)
- Danuta Sorysz
- 2 Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland
| | - Artur Dziewierz
- 2 Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Clinical Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland
| | - Katarzyna Gawlik
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Opalińska
- Clinical Department of Endocrinology, Oncological Endocrinology and Nuclear Medicine, University Hospital, Krakow, Poland
- Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Sowa Staszczak
- Clinical Department of Endocrinology, Oncological Endocrinology and Nuclear Medicine, University Hospital, Krakow, Poland
- Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Grochowska
- Department of Radiology, University Hospital, Krakow, Poland
| | - Krzysztof Piotr Malinowski
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Digital Medicine and Robotics, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Maruszak
- 2 Department of Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Bagieński
- Intensive Cardiac Care Unit, University Hospital, Krakow, Poland
| | - Dariusz Dudek
- Center for Digital Medicine and Robotics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
9
|
Kłosowicz M, Leksa D, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Aebisher D. Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research. Curr Issues Mol Biol 2024; 46:9503-9522. [PMID: 39329916 PMCID: PMC11430558 DOI: 10.3390/cimb46090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that causes degenerative and productive changes in the arteries. The resulting atherosclerotic plaques restrict the vessel lumen, causing blood flow disturbances. Plaques are formed mainly in large- and medium-sized arteries, usually at bends and forks where there is turbulence in blood flow. Depending on their location, they can lead to various disease states such as myocardial infarction, stroke, renal failure, peripheral vascular diseases, or sudden cardiac death. In this work, we reviewed the literature on the early detection of atherosclerosis markers in the application of photodynamic therapy to atherosclerosis-related diseases. Herein, we described the roles of C-reactive protein, insulin, osteopontin, osteoprotegerin, copeptin, the TGF-β cytokine family, and the amino acid homocysteine. Also, we discuss the role of microelements such as iron, copper, zinc, and Vitamin D in promoting the formation of atherosclerotic plaque. Dysregulation of the administered compounds is associated with an increased risk of atherosclerosis. Additionally, taking into account the pathophysiology of atherosclerotic plaque formation, we believe that maintaining homeostasis in the range of biomarkers mentioned in this article is crucial for slowing down the process of atherosclerotic plaque development and the stability of plaque that is already formed.
Collapse
Affiliation(s)
- Maksymilian Kłosowicz
- English Division Science Club, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-010 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- English Division Science Club, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
10
|
Hostačná L, Mašlanková J, Pella D, Hubková B, Mareková M, Pella D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. J Cardiovasc Dev Dis 2024; 11:258. [PMID: 39330316 PMCID: PMC11432239 DOI: 10.3390/jcdd11090258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Non-invasive possibilities of predicting cardiovascular risk and monitoring the treatment and progression of coronary artery disease (CAD) are important subjects of cardiovascular research. Various inflammatory markers have been identified as potential biomarkers of CAD, including interleukin-6 (IL-6), lipocalin-2 (LCN-2), growth differentiation factor 15 (GDF-15), and T cell immunoglobulin and mucin domain-3 (TIM-3). This research aims to identify their utility in the investigation of CAD severity and progression. The basic anthropometric parameters, as well as the levels of urea, creatinine, CRP, leukocytes, fibrinogen, and biomarkers of inflammation, were measured in 130 patients who underwent coronary angiography. In male patients, divided according to findings on coronary angiography, we observed an increasing expression of GDF-15 with increasing stenosis (with worsening findings). In females, we observed increasing fibrinogen expression with increasing stenosis, i.e., findings on coronary angiography. Correlation analysis did not confirm the relationship between TIM-3, LCN and 2, IL-6 and the severity of findings obtained by coronary angiography; however, the correlation of TIM-3 and LCN-2 expression was positive with the finding, and the correlation of IL-6 with the finding was surprisingly negative. Understanding the role of these inflammatory markers in CAD can be helpful in risk stratification, guiding therapeutic strategies, and monitoring treatment responses in patients with CAD.
Collapse
Affiliation(s)
- Lenka Hostačná
- Department of Clinical Biochemistry, Medirex, a.s., Magnezitárska 2/C, 040 13 Košice, Slovakia
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Dominik Pella
- 1st Department of Cardiology of the East Slovak Institute of Cardiovascular Diseases, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Daniel Pella
- 2nd Department of Cardiology of the East Slovak Institute of Cardiovascular Diseases, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
11
|
Bellofatto IA, Nikolaou PE, Andreadou I, Canepa M, Carbone F, Ghigo A, Heusch G, Kleinbongard P, Maack C, Podesser BK, Stamatelopoulos K, Stellos K, Vilahur G, Montecucco F, Liberale L. Mechanisms of damage and therapies for cardiac amyloidosis: a role for inflammation? Clin Res Cardiol 2024:10.1007/s00392-024-02522-2. [PMID: 39167195 DOI: 10.1007/s00392-024-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The term cardiac amyloidosis (CA) refers to the accumulation of extracellular amyloid deposits in the heart because of different conditions often affecting multiple organs including brain, kidney and liver. Notably, cardiac involvement significantly impacts prognosis of amyloidosis, with cardiac biomarkers playing a pivotal role in prognostic stratification. Therapeutic management poses a challenge due to limited response to conventional heart failure therapies, necessitating targeted approaches aimed at preventing, halting or reversing amyloid deposition. Mechanisms underlying organ damage in CA are multifactorial, involving proteotoxicity, oxidative stress, and mechanical interference. While the role of inflammation in CA remains incompletely understood, emerging evidence suggests its potential contribution to disease progression as well as its utility as a therapeutic target. This review reports on the cardiac involvement in systemic amyloidosis, its prognostic role and how to assess it. Current and emerging therapies will be critically discussed underscoring the need for further efforts aiming at elucidating CA pathophysiology. The emerging evidence suggesting the contribution of inflammation to disease progression and its prognostic role will also be reviewed possibly offering insights into novel therapeutic avenues for CA.
Collapse
Affiliation(s)
- Ilaria Anna Bellofatto
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Marco Canepa
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- Cardiology Unit, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.Go R. Benzi 10, 16132, Genoa, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Turin, Italy
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), and Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de La Santa Creu I Sant Pau, IIB-Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.Go R. Benzi 10, 16132, Genoa, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.Go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
12
|
Abreu H, Cappellano G. Osteopontin: A Versatile Biomarker-Insights and Innovations from Three Decades of Research. Biomedicines 2024; 12:1647. [PMID: 39200112 PMCID: PMC11352076 DOI: 10.3390/biomedicines12081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
This second Biomedicines Special Issue-"30 Years of osteopontin (OPN) Milestones and Future Avenues 2 [...].
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
13
|
Sun J, Tang M, Cai Z. SPP1 promotes tumor progression in esophageal carcinoma by activating focal adhesion pathway. J Gastrointest Oncol 2024; 15:818-828. [PMID: 38989403 PMCID: PMC11231845 DOI: 10.21037/jgo-24-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Recurrence and metastasis are the major obstacles affecting the therapeutic efficacy and clinical outcomes for patients with esophageal carcinoma (ESCA). Secreted phosphoprotein 1 (SPP1) is considered as a hub gene in ESCA and is negatively associated with disease-free survival (DFS) in ESCA. However, the exact roles and underlying mechanisms remain elusive. This study aims to examine the roles of SPP1 on ESCA, and elucidate the potential mechanisms. Methods Bioinformatics were used to analyze the expression of SPP1 in ESCA tissues, and its relations with clinicopathological characteristics and clinical prognosis in patients with ESCA based on The Cancer Genome Atlas (TCGA) dataset. Loss-of-function was conducted to examine the roles of SPP1 on malignant behaviors of ESCA cells by cell counting kit-8 (CCK8), plate clone, wound healing, and transwell assays. Gene set enrichment analysis (GSEA) was conducted to screen the pathways associated with SPP1 in ESCA. Then, the enriched pathway and the underlying mechanism were elucidated by western blotting, cell adhesion, and cell spreading assays. Lastly, Y15 [a specific inhibitor of focal adhesion kinase (FAK)] was used to examine its potential to inhibit tumor growth in ESCA cells. Results SPP1 was upregulated in ESCA tissues compared to the adjacent nontumorous tissues, which was closely associated with clinical stage, lymph node metastasis, histological subtype, and p53 mutation. A high expression of SPP1 indicated a poor clinical prognosis in patients with ESCA. The knockdown of SPP1 inhibited cell proliferative, migratory, and invasive capacities in ESCA cells. GSEA indicated that the focal adhesion pathway was closely related with SPP1 in ESCA. Further studies confirmed that the knockdown of SPP1 suppressed cell adhesion ability and reduced the expression of p-FAK and p-Erk in ESCA cells. In addition, Y15 inhibited FAK autophosphorylation and dramatically inhibited cell proliferation, migration, and invasion in ESCA cells. Conclusions SPP1 promotes tumor progression in ESCA by activating FAK/Erk pathway, and FAK is a potential therapeutic target to overcome tumor recurrence and metastasis of ESCA.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| | - Mingming Tang
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| | - Zhigang Cai
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Pan W, Cheng J, Cao X, Zheng Y, Yang Z, Feng W, Chen Y, Wu R. Niobium carbide MXenzyme-Driven comprehensive cholesterol regulation for photoacoustic image-guided and anti-inflammatory photothermal ablation in atherosclerosis. Bioact Mater 2024; 36:565-579. [PMID: 39072287 PMCID: PMC11276926 DOI: 10.1016/j.bioactmat.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Foam cells play a pivotal role in the progression of atherosclerosis progression by triggering inflammation within arterial walls. They release inflammatory molecules that attract additional immune cells, leading to further macrophage recruitment and plaque development. In this study, we develop an osteopontin (OPN) antibody-conjugated niobium carbide (Nb2C-aOPN) MXenzyme designed to selectively target and mildly ablate foam cells while reducing inflammation in the plaque microenvironment. This approach utilizes photonic hyperthermia to decrease plaque size by enhancing cholesterol regulation through both passive cholesterol outflow and positive cholesterol efflux. Nb2C-aOPN MXenzyme exhibits multiple enzyme-mimicking properties, including catalase, superoxide dismutase, peroxidase and glutathione peroxidase, and acts as a scavenger for reactive oxygen and nitrogen species. The inhibition of reactive oxygen and nitrogen species synergizes with photothermal ablation to promote positive cholesterol efflux, leading to reduced macrophage recruitment and a shift in macrophage phenotype from M1 to M2. This integrative strategy on cholesterol regulation and anti-inflammation highlights the potential of multifunctional 2D MXenzyme-based nanomedicine in advancing atherosclerotic regression.
Collapse
Affiliation(s)
- Wenqi Pan
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Jingyun Cheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinyue Cao
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
- Shanghai Institute of Materdicine, Shanghai, 200051, PR China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| |
Collapse
|
15
|
Raineri D, Chiocchetti A, Cappellano G. Beyond the Biomarker: Unveiling the Multifaceted Role of Osteopontin in Both Physiological and Pathological Processes. Biomedicines 2024; 12:982. [PMID: 38790944 PMCID: PMC11117741 DOI: 10.3390/biomedicines12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Osteopontin (OPN), a multifunctional protein, has emerged as a fascinating subject of study due to its diverse roles in various physiological and pathological processes [...].
Collapse
Affiliation(s)
- Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|