1
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Moriarty C, Gupta N, Bhattacharya D. Role of Glutamate Excitotoxicity in Glioblastoma Growth and Its Implications in Treatment. Cell Biol Int 2025; 49:421-434. [PMID: 40014265 PMCID: PMC11994879 DOI: 10.1002/cbin.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Glioblastoma is a highly malignant and invasive type of primary brain tumor that originates from astrocytes. Glutamate, a neurotransmitter in the brain plays a crucial role in excitotoxic cell death. Excessive glutamate triggers a pathological process known as glutamate excitotoxicity, leading to neuronal damage. This excitotoxicity contributes to neuronal death and tumor necrosis in glioblastoma, resulting in seizures and symptoms such as difficulty in concentrating, low energy, depression, and insomnia. Glioblastoma cells, derived from astrocytes, fail to maintain glutamate-glutamine homeostasis, releasing excess glutamate into the extracellular space. This glutamate activates ionotropic N-methyl-D-aspartate (NMDA) receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on nearby neurons, causing hyperexcitability and triggering apoptosis through caspase activation. Additionally, glioblastoma cells possess calcium-permeable AMPA receptors, which are activated by glutamate in an autocrine manner. This activation increases intracellular calcium levels, triggering various signaling pathways. Alkylating agent temozolomide has been used to counteract glutamate excitotoxicity, but its efficacy in directly combating excitotoxicity is limited due to the development of resistance in glioblastoma cells. There is an unmet need for alternative biochemical agents that can have the greatest impact on reducing glutamate excitotoxicity in glioblastoma. In this review, we discuss the mechanism and various signaling pathways involved in glutamate excitotoxicity in glioblastoma cells. We also examine the roles of various receptor and transporter proteins, in glutamate excitotoxicity and highlight biochemical agents that can mitigate glutamate excitotoxicity in glioblastoma and serve as potential therapeutic agents.
Collapse
Affiliation(s)
- Colin Moriarty
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Natasha Gupta
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
3
|
Lee MH, Thomas JL, Lin YL, Lin HY. In vitro activation of anti-cancer gene expression by delivery of CRISPR/dCas9 ribonucleoproteins to suppress glioblastoma. Int J Biol Macromol 2025; 308:142289. [PMID: 40118423 DOI: 10.1016/j.ijbiomac.2025.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cancer has been a leading cause of death for decades. While many anti-cancer drugs exist, precisely targeting malignant cells is crucial for successful tumor treatment. This targeting can be achieved by activating anti-cancer genes, which specifically destroy malignant cells. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) therapeutics provide a promising approach for gene activation. The technology involves utilizing the denatured Cas9 (CRISPR-associated) protein conjugated with a protein activator to deliver a ribonucleoprotein (RNP) complex including guide RNA into cells for the overexpression of specific proteins. In this study, several guide RNAs targeting cancer suppressor genes were employed. These genes included tumor protein p53 (TP53), human alpha-lactalbumin made lethal to tumor cells (HAMLET), melanoma differentiation-associated gene-7 (MDA7, IL24), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, NOXA), pro-apoptotic WT1 regulator (PAWR, PAR4), and TNF superfamily member 10 (TNFSF10, TRAIL). The dCas9/guide RNA complexes were then adsorbed onto magnetic epitope-imprinted nanoparticles. Uppsala 87 malignant glioma (U87MG) cells and induced astrocytes (noncancerous cells) were then treated with the RNP / nanoparticles. The overexpression of MDA7 and NOXA was monitored for at least 30 days using enzyme-linked immunosorbent assay (ELISA) kits. Finally, the induced astrocytes, first activated with these anti-cancer genes, were co-cultured with U87MG cells. This resulted in a "bystander" effect: the malignant U87MG cells underwent apoptosis, while the astrocytes survived.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yu-Ling Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan.
| |
Collapse
|
4
|
Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-Based Approaches in the Diagnosis and Treatment of Brain Tumors. J Clin Med 2024; 13:7449. [PMID: 39685907 DOI: 10.3390/jcm13237449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastomas are highly invasive brain tumors among perilous diseases. They are characterized by their fast proliferation and delayed detection that render them a significant focal point for medical research endeavors within the realm of cancer. Among glioblastomas, Glioblastoma multiforme (GBM) is the most aggressive and prevalent malignant brain tumor. For this, nanomaterials such as metallic and lipid nanoparticles and quantum dots have been acknowledged as efficient carriers. These nano-materials traverse the blood-brain barrier (BBB) and integrate and reach the necessary regions for neuro-oncology imaging and treatment purposes. This paper provides a thorough analysis on nanoparticles used in the diagnosis and treatment of brain tumors, especially for GBM.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Seyed Abdolvahab Banihashemian
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Farshid Zamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Davood Mehrabani
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
5
|
Caruso G, Laera R, Ferrarotto R, Garcia Moreira CG, Kumar R, Ius T, Lombardi G, Caffo M. Mitochondrial Dysfunction: Effects and Therapeutic Implications in Cerebral Gliomas. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1888. [PMID: 39597073 PMCID: PMC11596904 DOI: 10.3390/medicina60111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Gliomas are the most common primary brain tumors, representing approximately 28% of all central nervous system tumors. These tumors are characterized by rapid progression and show a median survival of approximately 18 months. The therapeutic options consist of surgical resection followed by radiotherapy and chemotherapy. Despite the multidisciplinary approach and the biomolecular role of targeted therapies, the median progression-free survival is approximately 6-8 months. The incomplete tumor compliance with treatment is due to several factors such as the presence of the blood-brain barrier, the numerous pathways involved in tumor transformation, and the presence of intra-tumoral mutations. Among these, the interaction between the mutations of genes involved in tumor bio-energetic metabolism and the functional response of the tumor has become the protagonist of numerous studies. In this scenario, the main role is played by mitochondria, cellular organelles delimited by a double membrane and containing their own DNA (mtDNA), which participates in numerous cellular processes such as the regulation of cellular metabolism, cellular proliferation, and apoptosis and is also the main source of cellular energy production. Therefore, it is understood that the mitochondrion, specifically its functional alteration, is a leading figure in tumor transformation, including brain tumors. The acquisition of mutations in the mitochondrial DNA of tumor cells and the subsequent identification of the so-called mitochondria-related genes (MRGs), both functional (mutation of Complex I) and structural (mutations of Complex III/IV), have been seen to play an important role in metabolic reprogramming with increased proliferation, resistance to apoptosis, and the progression of tumorigenesis. This demonstrates that these mitochondrial alterations could have a role not only in the intrinsic tumor biology but also in the extrinsic one associated with the therapeutic response. We aim to summarize the main mitochondrial dysfunction interactions present in gliomas and how they might impact prognosis.
Collapse
Affiliation(s)
- Gerardo Caruso
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Roberta Laera
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Rosamaria Ferrarotto
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Cristofer Gonzalo Garcia Moreira
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| | - Rajiv Kumar
- Faculty of Science, University of Delhi, New Delhi 110007, India;
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, 33100 Udine, Italy;
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (C.G.G.M.); (M.C.)
| |
Collapse
|
6
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
7
|
Al-Ani SA, Lee QY, Maheswaran D, Sin YM, Loh JS, Foo JB, Hamzah S, Ng JF, Tan LKS. Potential of Exosomes as Multifunctional Nanocarriers for Targeted Drug Delivery. Mol Biotechnol 2024:10.1007/s12033-024-01268-6. [PMID: 39269575 DOI: 10.1007/s12033-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Exosomes are small vesicles that form when multivesicular bodies fuse with the plasma membrane and are released into body fluids. They play a vital role in facilitating communication between cells by transferring different biomolecules, including DNA, RNA, proteins, and lipids, over both short and long distances. They also function as vital mediators in both states of health and disease, exerting an impact on several physiological processes. Exosomes have been modified to overcome the limitations of natural exosomes to enhance their potential as carriers for drug delivery systems, and these modifications aim to improve the drug delivery efficiency, enhance tissue and organ targeting, and prolong the circulating half-life of exosomes. This review discussed recent advancements in exosome nanotechnology, as well as the progression and use of exosomes for drug delivery. The potential commercialisation and challenges associated with the use of exosome-based drug delivery systems were also discussed, aiming to motivate the development of exosome-based theranostic nanoplatforms and nanotechnology for improved healthcare treatments.
Collapse
Affiliation(s)
- Safa Ali Al-Ani
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Qiao Ying Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Danesha Maheswaran
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Yuh Miin Sin
- Faculty of Medicine, AIMST University, Jalan Bedong, 08100, Semeling, Kedah Darulaman, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor campus, 42300 Puncak Alam, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
- Digital Health and Medical Advancements Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
8
|
Nguyen TTT, Greene LA, Mnatsakanyan H, Badr CE. Revolutionizing Brain Tumor Care: Emerging Technologies and Strategies. Biomedicines 2024; 12:1376. [PMID: 38927583 PMCID: PMC11202201 DOI: 10.3390/biomedicines12061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive forms of brain tumor, characterized by a daunting prognosis with a life expectancy hovering around 12-16 months. Despite a century of relentless research, only a select few drugs have received approval for brain tumor treatment, largely due to the formidable barrier posed by the blood-brain barrier. The current standard of care involves a multifaceted approach combining surgery, irradiation, and chemotherapy. However, recurrence often occurs within months despite these interventions. The formidable challenges of drug delivery to the brain and overcoming therapeutic resistance have become focal points in the treatment of brain tumors and are deemed essential to overcoming tumor recurrence. In recent years, a promising wave of advanced treatments has emerged, offering a glimpse of hope to overcome the limitations of existing therapies. This review aims to highlight cutting-edge technologies in the current and ongoing stages of development, providing patients with valuable insights to guide their choices in brain tumor treatment.
Collapse
Affiliation(s)
- Trang T. T. Nguyen
- Ronald O. Perelman Department of Dermatology, Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA; (H.M.); (C.E.B.)
| | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA; (H.M.); (C.E.B.)
| |
Collapse
|
9
|
Banda A, Impomeni O, Singh A, Baloch AR, Hu W, Jaijyan DK. Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies. Vaccines (Basel) 2024; 12:636. [PMID: 38932365 PMCID: PMC11209408 DOI: 10.3390/vaccines12060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application.
Collapse
Affiliation(s)
- Amrutha Banda
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Olivia Impomeni
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Aparana Singh
- Department of Chemistry, National Institute of Technology Agartala, Agartala 799046, India;
| | - Abdul Rasheed Baloch
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Dabbu Kumar Jaijyan
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
10
|
Tian T. Orbital and Lumbosacral Plexiform Neurofibroma with PTPN11 Mutation: A Form of the RASopathy. Cureus 2024; 16:e62301. [PMID: 39006611 PMCID: PMC11245875 DOI: 10.7759/cureus.62301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
RASopathies are a group that encompasses a spectrum of related disorders caused by mutations linked to the RAS/mitogen-activated protein kinase (RAS/MAPK) pathway, including neurofibromatosis type 1 (NF1), Noonan syndrome (NS), neurofibromatosis-Noonan syndrome (NFNS), Noonan syndrome with multiple lentigines (NSML). Neurofibromas, as a hallmark of NF1, are extremely rare in patients with other RASopathies. Here we present a case of a 39-year-old Chinese male displaying orbital neurofibromas and lumbosacral plexiform neurofibromas. Histopathology of a CT-guided biopsy of the mass revealed it to be a neurofibroma. The targeted sequencing analysis did not find any pathogenic sequence alteration in the NF1 or NF2 causative genes in blood lymphocytes and hypertrophic nerve tissue, and no additional signs of NF1 were detected, thereby not meeting the diagnostic criteria for NF1. However, we identified a heterozygous mutation (c.836A>G, p.Y279C) in the PTPN11 gene, which is one of the key components of the RAS-MAPK signaling pathway and is associated with NS, NFNS, and NSML. Nonetheless, a thorough examination did not reveal any signs of these syndromes in the patient. Consequently, it was inferred that this patient likely falls within the spectrum of the RASopathies. This represents a unique case manifesting as orbital and lumbosacral plexiform neurofibromas carrying a PTPN11 gene mutation, thereby broadening the phenotype spectrum of PTPN11 mutations. Our results also highlight the overlap between RASopathies. Neurofibromas should be considered indicative of a broader spectrum of disorders resulting from mutations in RASopathies other than NF1.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, CHN
| |
Collapse
|
11
|
Begagić E, Bečulić H, Džidić-Krivić A, Kadić Vukas S, Hadžić S, Mekić-Abazović A, Šegalo S, Papić E, Muchai Echengi E, Pugonja R, Kasapović T, Kavgić D, Nuhović A, Juković-Bihorac F, Đuričić S, Pojskić M. Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review. Cancers (Basel) 2024; 16:2089. [PMID: 38893207 PMCID: PMC11171068 DOI: 10.3390/cancers16112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The study aims to investigate the role of hypoxia-inducible factors (HIFs) in the development, progression, and therapeutic potential of glioblastomas. METHODOLOGY The study, following PRISMA guidelines, systematically examined hypoxia and HIFs in glioblastoma using MEDLINE (PubMed), Web of Science, and Scopus. A total of 104 relevant studies underwent data extraction. RESULTS Among the 104 studies, global contributions were diverse, with China leading at 23.1%. The most productive year was 2019, accounting for 11.5%. Hypoxia-inducible factor 1 alpha (HIF1α) was frequently studied, followed by hypoxia-inducible factor 2 alpha (HIF2α), osteopontin, and cavolin-1. Commonly associated factors and pathways include glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) receptors, vascular endothelial growth factor (VEGF), phosphoinositide 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway, and reactive oxygen species (ROS). HIF expression correlates with various glioblastoma hallmarks, including progression, survival, neovascularization, glucose metabolism, migration, and invasion. CONCLUSION Overcoming challenges such as treatment resistance and the absence of biomarkers is critical for the effective integration of HIF-related therapies into the treatment of glioblastoma with the aim of optimizing patient outcomes.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina;
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina (S.K.V.)
| | - Semir Hadžić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Alma Mekić-Abazović
- Department of Oncology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Sabina Šegalo
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emsel Papić
- Department of Laboratory Technologies, Faculty of Health Studies, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (S.Š.); (E.P.)
| | - Emmanuel Muchai Echengi
- College of Health Sciences, School of Medicine, Kenyatta University, Nairobi 43844-00100, Kenya
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Dalila Kavgić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Fatima Juković-Bihorac
- Department of Pathology, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Slaviša Đuričić
- Department of Pathology, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, 35033 Marburg, Germany
| |
Collapse
|
12
|
Ottonelli I, Adani E, Bighinati A, Cuoghi S, Tosi G, Vandelli MA, Ruozi B, Marigo V, Duskey JT. Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology. Int J Nanomedicine 2024; 19:4235-4251. [PMID: 38766661 PMCID: PMC11102183 DOI: 10.2147/ijn.s457302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Begagić E, Bečulić H, Pugonja R, Memić Z, Balogun S, Džidić-Krivić A, Milanović E, Salković N, Nuhović A, Skomorac R, Sefo H, Pojskić M. Augmented Reality Integration in Skull Base Neurosurgery: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:335. [PMID: 38399622 PMCID: PMC10889940 DOI: 10.3390/medicina60020335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: To investigate the role of augmented reality (AR) in skull base (SB) neurosurgery. Materials and Methods: Utilizing PRISMA methodology, PubMed and Scopus databases were explored to extract data related to AR integration in SB surgery. Results: The majority of 19 included studies (42.1%) were conducted in the United States, with a focus on the last five years (77.8%). Categorization included phantom skull models (31.2%, n = 6), human cadavers (15.8%, n = 3), or human patients (52.6%, n = 10). Microscopic surgery was the predominant modality in 10 studies (52.6%). Of the 19 studies, surgical modality was specified in 18, with microscopic surgery being predominant (52.6%). Most studies used only CT as the data source (n = 9; 47.4%), and optical tracking was the prevalent tracking modality (n = 9; 47.3%). The Target Registration Error (TRE) spanned from 0.55 to 10.62 mm. Conclusion: Despite variations in Target Registration Error (TRE) values, the studies highlighted successful outcomes and minimal complications. Challenges, such as device practicality and data security, were acknowledged, but the application of low-cost AR devices suggests broader feasibility.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (H.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Zlatan Memić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Simon Balogun
- Division of Neurosurgery, Department of Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ilesa Road PMB 5538, Ile-Ife 220282, Nigeria
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Elma Milanović
- Neurology Clinic, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Naida Salković
- Department of General Medicine, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina;
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, Univerzitetska 1, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (H.B.)
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Haso Sefo
- Neurosurgery Clinic, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|