1
|
Kokkinis S, Singh M, Paudel KR, De Rubis G, Bani Saeid A, Jessamine V, Datsyuk J, Singh SK, Vishwas S, Adams J, Hansbro PM, Oliver B, Gupta G, Dureja H, Dua K. Plant-based therapeutics for chronic obstructive pulmonary diseases: Nanoformulation strategies to overcome delivery challenges. FOOD BIOSCI 2024; 58:103761. [DOI: 10.1016/j.fbio.2024.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Yu B, Shi R, Liu C, Liu Z, Shen P, Hu J, Shi F. pH-responsive gelatin polymer-coated silica-based mesoporous composites for the sustained-release of indomethacin. Heliyon 2023; 9:e13705. [PMID: 36873513 PMCID: PMC9976327 DOI: 10.1016/j.heliyon.2023.e13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
This paper prepared drug-loaded mesoporous silica composites with a pH-responsive type. These composites were prepared by using three-dimensional caged silica (SBA-16) as the carrier, 3-aminopropyl trimethoxysilane (APTMS) as the silane coupling agent, and indomethacin (IMC) as the loaded drug, respectively. The drug-loaded precursor NH2-SBA-16@IMC was prepared by solution diffusion adsorption. Finally, the pH-responsive drug-loaded composites NH2-SBA-16@IMC@GA were synthesized by wrapping the NH2-SBA-16@IMC with a condensation polymer of gelatin and glutaraldehyde. The composition and structure of the drug-loaded composites were characterized by FT-IR, XRD, TG, SEM, TEM, and N2 adsorption-desorption. The in vitro simulated release performance of the drug-loaded composites was investigated at 37 °C under three pH conditions. The results show that the NH2-SBA-16@IMC@GA can be released in response to specific pH environment, which can effectively control the release speed of the indomethacin.
Collapse
Affiliation(s)
- Bo Yu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.,College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ruiping Shi
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Chunlai Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zelong Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Peihang Shen
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jianglei Hu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Fengwei Shi
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
3
|
Wieczorek K, Szutkowska B, Kierzek E. Anti-Influenza Strategies Based on Nanoparticle Applications. Pathogens 2020; 9:E1020. [PMID: 33287259 PMCID: PMC7761763 DOI: 10.3390/pathogens9121020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza virus has the potential for being one of the deadliest viruses, as we know from the pandemic's history. The influenza virus, with a constantly mutating genome, is becoming resistant to existing antiviral drugs and vaccines. For that reason, there is an urgent need for developing new therapeutics and therapies. Despite the fact that a new generation of universal vaccines or anti-influenza drugs are being developed, the perfect remedy has still not been found. In this review, various strategies for using nanoparticles (NPs) to defeat influenza virus infections are presented. Several categories of NP applications are highlighted: NPs as immuno-inducing vaccines, NPs used in gene silencing approaches, bare NPs influencing influenza virus life cycle and the use of NPs for drug delivery. This rapidly growing field of anti-influenza methods based on nanotechnology is very promising. Although profound research must be conducted to fully understand and control the potential side effects of the new generation of antivirals, the presented and discussed studies show that nanotechnology methods can effectively induce the immune responses or inhibit influenza virus activity both in vitro and in vivo. Moreover, with its variety of modification possibilities, nanotechnology has great potential for applications and may be helpful not only in anti-influenza but also in the general antiviral approaches.
Collapse
Affiliation(s)
- Klaudia Wieczorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
- NanoBioMedical Centre, Adam Mickiewicz University, 61-704 Poznan, Poland
| | - Barbara Szutkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (K.W.); (B.S.)
| |
Collapse
|
4
|
Jordan JT, Oates RP, Subbiah S, Payton PR, Singh KP, Shah SA, Green MJ, Klein DM, Cañas-Carrell JE. Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. CHEMOSPHERE 2020; 256:127042. [PMID: 32450352 DOI: 10.1016/j.chemosphere.2020.127042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Carbon nanotube (CNT) applications are increasing in consumer products, including agriculture devices, making them an important contaminant to study in the field of plant nanotoxicology. Several studies have observed the uptake and effects of CNTs in plants. However, in other studies differing results were observed on growth and physiology depending on the plant species and type of CNT. This study focused on the effects of CNTs on plant phenotype with growth, time to flowering, fruiting time as endpoints, and physiology, through amino acid and phytohormone content, in tomato after exposure to multiple types of CNTs. Plants grown in CNT-contaminated soil exhibited a delay in early growth and flowering (especially in treatments of 1 mg/kg multi-walled nanotubes (MWNTs), 10 mg/kg MWNTs, and 1 mg/kg MWNTs-COOH). However, CNTs did not affect plant growth or height later in the life cycle. No significant differences in abscisic acid (ABA) and citrulline content were observed between the treated and control plants. However, single-walled nanotube (SWNT) exposure significantly increased salicylic acid (SA) content in tomato. These results suggest that SWNTs may elicit a stress response in tomatoes. Results from this study offer more insight into how plants respond and acclimate to CNTs. These results will lead to a better understanding of CNT impact on plant phenotype and physiology.
Collapse
Affiliation(s)
- Juliette T Jordan
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - R P Oates
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Paxton R Payton
- United State Department of Agriculture- Agriculture Research Service-Cropping Systems Research Laboratory, 3810 4th St, Lubbock, TX, 79415, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Smit A Shah
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU Chemical Engineering Dept. 3122 TAMU Room 200, College Station, Texas, 77843, USA
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU Chemical Engineering Dept. 3122 TAMU Room 200, College Station, Texas, 77843, USA
| | - David M Klein
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA.
| |
Collapse
|
5
|
Lu S, Lei X, Ren H, Zheng S, Qiang J, Zhang Z, Chen Y, Wei T, Wang F, Chen X. PEGylated Dimeric BODIPY Photosensitizers as Nanocarriers for Combined Chemotherapy and Cathepsin B-Activated Photodynamic Therapy in 3D Tumor Spheroids. ACS APPLIED BIO MATERIALS 2020; 3:3835-3845. [DOI: 10.1021/acsabm.0c00394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiang Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 210009, China
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jian Qiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zhijie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yahui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tingwen Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
6
|
Krüger-Genge A, Mauger O, Storsberg J, Schmidt C. Epigenetics-Shedding Light on the Path Ahead for Material Sciences. Diseases 2019; 7:diseases7020043. [PMID: 31208004 PMCID: PMC6631476 DOI: 10.3390/diseases7020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022] Open
Abstract
The harmonious regulation of bodily function is a necessity for healthy individuals. Looking from the viewpoint of material sciences, one can only marvel at the cellular factories, their renewal, and the overall control of messaging and control of responses. As aging progresses and/or pathologies arise, clinicians may be forced to look for replacement of organs/tissues with medical devices. Since all devices are tailored, a detailed understanding of developmental processes, including aberrant processes leading to pathologies, is crucial to provide clinicians with a suitable device. Although research in the field of epigenetics has produced effective therapeutics and diagnostic markers, our currently fragmented understanding of epigenetic processes as they relate to material development is inherently limited, with logical implications for the success of medical procedures. Here, we illustrate how material sciences for clinical applications, critically depend on all aspects of biomedical sciences, including the field of epigenetics.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| | - Olivia Mauger
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| | - Joachim Storsberg
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| | - Christian Schmidt
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Nishat S, Awan FR, Bajwa SZ. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics. ANAL SCI 2019; 35:123-131. [PMID: 30224569 DOI: 10.2116/analsci.18r001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In resource-limited settings, the availability of medical practitioners and early diagnostic facilities are inadequate relative to the population size and disease burden. To address cost and delayed time issues in diagnostics, strip-based immunoassays, e.g. dipstick, lateral flow assay (LFA) and microfluidic paper-based analytical devices (microPADs), have emerged as promising alternatives to conventional diagnostic approaches. These assays rely on chromogenic agents to detect disease biomarkers. However, limited specificity and sensitivity have motivated scientists to improve the efficiency of these assays by conjugating chromogenic agents with nanoparticles for enhanced qualitative and quantitative output. Various nanomaterials, which include metallic, magnetic and luminescent nanoparticles, are being used in the fabrication of biosensors to detect and quantify biomolecules and disease biomarkers. This review discusses some of the principles and applications of such nanoparticle-based point of care biosensors in biomedical diagnosis.
Collapse
Affiliation(s)
- Sumaira Nishat
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS).,Department of Computer Science, University of Agriculture
| | - Fazli Rabbi Awan
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| |
Collapse
|
8
|
Nanotherapeutic Anti-influenza Solutions: Current Knowledge and Future Challenges. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 2018; 6:237. [PMID: 29988578 PMCID: PMC6026678 DOI: 10.3389/fchem.2018.00237] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Over the years, the scientific importance of nanoparticles for biomedical applications has increased. The high stability and biocompatibility, together with the low toxicity of the nanoparticles developed lead to their use as targeted drug delivery systems, bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm to 1 μm, as well as their optical properties, allow them to be studied using microscopy and spectroscopy techniques. In order to be effectively used, the physicochemical properties of nanoparticle formulations need to be taken into account, namely, particle size, surface charge distribution, surface derivatization and/or loading capacity, and related interactions. These properties need to be optimized considering the final nanoparticle intended biodistribution and target. In this review, we cover light scattering based techniques, namely dynamic light scattering and zeta-potential, used for the physicochemical characterization of nanoparticles. Dynamic light scattering is used to measure nanoparticles size, but also to evaluate their stability over time in suspension, at different pH and temperature conditions. Zeta-potential is used to characterize nanoparticles surface charge, obtaining information about their stability and surface interaction with other molecules. In this review, we focus on nanoparticle characterization and application in infection, cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Huang M, Liu L, Wang S, Zhu H, Wu D, Yu Z, Zhou S. Dendritic Mesoporous Silica Nanospheres Synthesized by a Novel Dual-Templating Micelle System for the Preparation of Functional Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:519-526. [PMID: 27989129 DOI: 10.1021/acs.langmuir.6b03282] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly monodisperse, dendritic, and functionalized mesoporous silica nanospheres (MSNs) with sub-200 nm size were synthesized in a one-pot sol-gel reaction, by a dual-templating micelle system consisting of a partially fluorinated short-chain anionic fluorocarbon surfactant and cetyltrimethylammonium bromide. This kind of anionic fluorocarbon surfactant works simultaneously as a swelling agent to enlarge the pore of the MSNs, an ion-pair agent to the structure-directing silane in the preparation of amine-functionalized MSNs, and a surface tension reducing agent to make the system thermodynamically more stable for producing more uniform MSNs. The particle size and the morphology of the resultant MSNs can be fine-tuned by changing the amount of the fluorocarbon surfactant added and the ratio of the functional group containing organosilane to tetraethoxysilane. Subsequently, the as-prepared MSNs were used as base materials for the preparation of drug delivery nanomaterials through the surface grafting of a pH-sensitive drug-conjugated polymer and fluorescent nanomaterials through the embedding of europium(III) complex or the immobilization of large molecule fluorescein isothiocyanate-bovine serum albumin.
Collapse
Affiliation(s)
- Mingxian Huang
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| | - Lu Liu
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| | - Haiyan Zhu
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| | - Dahui Wu
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| | - Zhihao Yu
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| | - Shilin Zhou
- College of Science, University of Shanghai for Science and Technology , Shanghai 200093, P.R. China
| |
Collapse
|
11
|
Schmidt C, Yokaichiya F, Doğangüzel N, Dias Franco MKK, Cavalcanti LP, Brown MA, Alkschbirs MI, de Araujo DR, Kumpugdee-Vollrath M, Storsberg J. An Abraded Surface of Doxorubicin-Loaded Surfactant-Containing Drug Delivery Systems Effectively Reduces the Survival of Carcinoma Cells. Biomedicines 2016; 4:biomedicines4030022. [PMID: 28536389 PMCID: PMC5344260 DOI: 10.3390/biomedicines4030022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
An effective antitumor remedy is yet to be developed. All previous approaches for a targeted delivery of anticancer medicine have relied on trial and error. The goal of this study was to use structural insights gained from the study of delivery systems and malignant cells to provide for a systematic approach to the development of next-generation drugs. We used doxorubicin (Dox) liposomal formulations. We assayed for cytotoxicity via the electrical current exclusion method. Dialysis of the samples yielded information about their drug release profiles. Information about the surface of the delivery systems was obtained through synchrotron small-angle X-ray scattering (SAXS) measurements. SAXS measurements revealed that Dox-loading yielded an abraded surface of our Dox liposomal formulation containing soybean oil, which also correlated with an effective reduction of the survival of carcinoma cells. Furthermore, a dialysis assay revealed that a higher burst of Dox was released from soybean oil-containing preparations within the first five hours. We conclude from our results that an abraded surface of Dox-loaded drug delivery system increases their efficacy. The apparent match between surface geometry of drug delivery systems and target cells is suggested as a steppingstone for refined development of drug delivery systems. This is the first study to provide a systematic approach to developing next-generation drug carrier systems using structural insights to guide the development of next-generation drug delivery systems with increased efficacy and reduced side effects.
Collapse
Affiliation(s)
- Christian Schmidt
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.
| | - Fabiano Yokaichiya
- Institute of Materials and Energy, Helmholtz-Center Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Nurdan Doğangüzel
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.
- Department of Pharmaceutical Engineering, Beuth University of Applied Sciences Berlin, 13353 Berlin, Germany.
| | - Margareth K K Dias Franco
- Instituto de Pesquisas Energéticas e Nucleares, Avenida Lineo Prestes, 2342, Cidade Universitária Armando Salles de Oliveira, SP 05508-900, Brazil.
| | - Leide P Cavalcanti
- School of Chemical Engineering, University of Campinas, Campinas, SP 13083-970, Brazil.
| | - Mark A Brown
- Department of Clinical Sciences, Cell and Molecular Biology Program and Flint Cancer Center, Colorado State University, Fort Collins, CO 80523-1052, USA.
| | - Melissa I Alkschbirs
- Instituto de Química, Campinas, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
| | - Daniele R de Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil.
| | - Mont Kumpugdee-Vollrath
- Department of Pharmaceutical Engineering, Beuth University of Applied Sciences Berlin, 13353 Berlin, Germany.
| | - Joachim Storsberg
- Department of Biomaterials and Healthcare, Division of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Storsberg J, Laughton MW, Geyer M, Kumpugdee-Vollrath M, Schmidt C. Improving the bioavailability of pharmacologically active substances in pharmaceutical and cosmetic formulations. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|