1
|
Bakhtiari H, Naghoosi H, Sattari S, Vahidi M, Khomartash MS, Faridfar A, Rajaeinejad M, Nikandish M. A novel hybrid approach to overcome defects of CE-SELEX and cell-SELEX in developing aptamers against aspartate β-hydroxylase. Res Pharm Sci 2025; 20:65-76. [PMID: 40190823 PMCID: PMC11972023 DOI: 10.4103/rps.rps_134_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 04/09/2025] Open
Abstract
Background and purpose Aptamers, a new category of molecular probes, are overthrowing antibodies in molecular diagnostics. However, there are serious problems with using aptamers for this application including poor or non-specific binding in vivo conditions. Systematic evolution of aptamers is achieved through various approaches including CE-SELEX and Cell-SELEX, each suffering its inevitable weaknesses. The shortcomings of negative selection and the lengthy procedure are Cell-SELEX's main problems, while CE-SELEX is deprived of native targets. Here, we introduced a kind of hybrid CE-Cell-SELEX, named CEC hybrid-SELEX, for addressing these limitations in creating aptamer probes detecting human aspartate β-hydroxylase (ASPH), which is a well-established tumor biomarker, in cancer diagnostic investigations. Experimental approach In our approach, the selected oligomer pool from the last cycle of CE-SELEX was sequenced and then subjected to 3 additional rounds of Cell-SELEX which provides native ASPH (CEC hybrid-SELEX). High-throughput sequencing was applied to achieve a comprehensive sight of the enriched pools. Further confirmatory investigations on oligomers with higher copy numbers were performed using flow cytometry. Findings/Results Three selected oligomers, AP-CEC 1, AP-CEC 2, and AP-CEC 3, showing Kd values of 43.09 nM, 34.85 nM, and 35.92 nM, respectively, were achieved based on the affinity assessment of the ASPH-expressing cells. Conclusion and implications Our research suggested that CEC hybrid-SELEX could help recognize which oligomers from CE-SELEX are more capable of binding native ASPH in vivo.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Cancer Epidemiology Research Center (AJA-CERTC), Aja University of Medical Sciences, Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University, The Branch of Arak, Arak, Iran
| | - Hamed Naghoosi
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Sina Sattari
- Health Research Center, Shahid Chamran Hospital, Tehran, Iran
| | - Mahmoud Vahidi
- Medical Biotechnology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | | | - Ali Faridfar
- Cancer Epidemiology Research Center (AJA-CERTC), Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- Cancer Epidemiology Research Center (AJA-CERTC), Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- Cancer Epidemiology Research Center (AJA-CERTC), Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
de Araújo NS, Moreira ADS, Abreu RDS, Junior VV, Antunes D, Mendonça JB, Sassaro TF, Jurberg AD, Ferreira-Reis R, Bastos NC, Fernandes PV, Guimarães ACR, Degrave WMS, Tilli TM, Waghabi MC. Aptamer-Based Recognition of Breast Tumor Cells: A New Era for Breast Cancer Diagnosis. Int J Mol Sci 2024; 25:840. [PMID: 38255914 PMCID: PMC10815801 DOI: 10.3390/ijms25020840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 01/24/2024] Open
Abstract
Breast cancer is one of the leading causes of death among women worldwide and can be classified into four major distinct molecular subtypes based on the expression of specific receptors. Despite significant advances, the lack of biomarkers for detailed diagnosis and prognosis remains a major challenge in the field of oncology. This study aimed to identify short single-stranded oligonucleotides known as aptamers to improve breast cancer diagnosis. The Cell-SELEX technique was used to select aptamers specific to the MDA-MB-231 tumor cell line. After selection, five aptamers demonstrated specific recognition for tumor breast cell lines and no binding to non-tumor breast cells. Validation of aptamer specificity revealed recognition of primary and metastatic tumors of all subtypes. In particular, AptaB4 and AptaB5 showed greater recognition of primary tumors and metastatic tissue, respectively. Finally, a computational biology approach was used to identify potential aptamer targets, which indicated that CSKP could interact with AptaB4. These results suggest that aptamers are promising in breast cancer diagnosis and treatment due to their specificity and selectivity.
Collapse
Affiliation(s)
- Natassia Silva de Araújo
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Aline dos Santos Moreira
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Rayane da Silva Abreu
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Valdemir Vargas Junior
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Deborah Antunes
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Julia Badaró Mendonça
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Tayanne Felippe Sassaro
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Arnon Dias Jurberg
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (A.D.J.); (R.F.-R.)
- Laboratório de Animais Transgênicos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Instituto de Educação Médica (IDOMED), Universidade Estácio de Sá (UNESA)—Campus Vista Carioca, Rio de Janeiro 20071-004, RJ, Brazil
| | - Rafaella Ferreira-Reis
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (A.D.J.); (R.F.-R.)
| | - Nina Carrossini Bastos
- Divisão de Patologia (DIPAT), Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (N.C.B.); (P.V.F.)
| | - Priscila Valverde Fernandes
- Divisão de Patologia (DIPAT), Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (N.C.B.); (P.V.F.)
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| | - Tatiana Martins Tilli
- Laboratório de Fisiopatologia Clínica e Experimental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil;
- Plataforma de Oncologia Translacional, Centro de Desenvolvimento Tecnológico em Saúde, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.d.A.); (A.d.S.M.); (R.d.S.A.); (V.V.J.); (D.A.); (J.B.M.); (T.F.S.); (A.C.R.G.); (W.M.S.D.)
| |
Collapse
|
3
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
4
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
5
|
Zhang Z, Liu N, Zhang Z, Xu D, Ma S, Wang X, Zhou T, Zhang G, Wang F. Construction of Aptamer-Based Molecular Beacons with Varied Blocked Structures and Targeted Detection of Thrombin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8738-8745. [PMID: 34270267 DOI: 10.1021/acs.langmuir.1c00994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A kind of blocked aptamer-functionalized molecular beacon (MB) was designed as fluorescence sensors to detect thrombins by binding-induced "turn on" structural transformation. Three MBs named MB(8 + 8), MB(15 + 8), and MB(15 + 6) consisted of two single-stranded oligonucleotides. One long single-stranded oligonucleotide (abbreviated as SS) contained a thrombin aptamer sequence and was modified with a fluorescence group and quenching group on each end side. Another short single-stranded oligonucleotide (written as cDNA) was partially complementary to the long SS. It was interesting to find that the complementary sequence length of cDNA greatly influenced the structure of the MBs. The construction of MB experiments proved that MB(8 + 8) and MB(15 + 8) could form the quenching MBs but MB(15 + 6) could not. MB(8 + 8) was composed of a SS strand paired with a complementary cDNA(8 + 8), which was called one-to-one combination, while MB(15 + 8) was two-to-two combination and MB(15 + 6) was one-to-two combination. When the ratio of SS and cDNA (15 + 8) was 1:1, the quenching efficiency reached maximum. But with the molar ratio of SS and cDNA(8 + 8) increasing, the quenching efficiency increased continuously. Under the optimal conditions that we studied, the detection limit of thrombin by MB(8 + 8) and MB(15 + 8) was 0.19 and 1.2 nM, respectively. In addition, the assay proved to be selective, and the average recovery of thrombin detected by MB(8 + 8) and MB(15 + 8) in diluted serum was 95.4 and 94.5%, respectively.
Collapse
Affiliation(s)
- Zhiqing Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Nana Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zichen Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Dongyan Xu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuai Ma
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiufeng Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Ting Zhou
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Guodong Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
6
|
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, Sieron AL. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front Bioeng Biotechnol 2021; 9:701031. [PMID: 34354988 PMCID: PMC8330802 DOI: 10.3389/fbioe.2021.701031] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transfection is a powerful analytical tool enabling studies of gene products and functions in eukaryotic cells. Successful delivery of genetic material into cells depends on DNA quantity and quality, incubation time and ratio of transfection reagent to DNA, the origin, type and the passage of transfected cells, and the presence or absence of serum in the cell culture. So far a number of transfection methods that use viruses, non-viral particles or physical factors as the nucleic acids carriers have been developed. Among non-viral carriers, the cationic polymers are proposed as the most attractive ones due to the possibility of their chemical structure modification, low toxicity and immunogenicity. In this review the delivery systems as well as physical, biological and chemical methods used for eukaryotic cells transfection are described and discussed.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Pawel Prus
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students’ Scientific Society, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander L. Sieron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Prakash JS, Ramachandran M, Rajamanickam K. Facile Synthesis of Zinc Alloyed Cadmium Selenide (Cd/ZnSe) Quantum Dots and its Photocatalytic Activity and In Vivo Toxicity Assessment in Danio rerio Embryos. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Novel Approach to Overcome Defects of Cell-SELEX in Developing Aptamers against Aspartate β-Hydroxylase. ACS OMEGA 2021; 6:11005-11014. [PMID: 34056254 PMCID: PMC8153902 DOI: 10.1021/acsomega.1c00876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 05/04/2023]
Abstract
Cell-based aptamer selection (Cell-SELEX) against predefined protein targets that benefits using the native form of the targets is the most promising approach to achieve aptamer probes capable of recognizing targets under both in vitro and in vivo conditions. The major disadvantages in Cell-SELEX are the imperfectness of the negative selection step and the lengthy procedure of selection. Here, we introduced the Counter-SELEX as part of our modified Cell-SELEX and implemented deep sequencing to overcome these shortcomings in developing aptamers against aspartate β-hydroxylase (ASPH) as a known tumor marker. In parallel with the conventional Cell-SELEX, five consecutive cycles of counter selection were accomplished using sequences bound to negative cells (the Counter-SELEX) to detect oligos that are not specific for ASPH. After high-throughput sequencing, the representative of each promising achieved family was subjected to further confirmatory analysis via flow cytometry, followed by the fluorescence immunostaining of histopathological sections. Implementing our innovative complementary method, annoying mis-selected sequences in Cell-SELEX enriched pools were effectively identified and removed. According to the affinity assay on the cells displaying ASPH, three aptamers, AP-Cell 1, AP-Cell 2, and AP-Cell 3, with K d values of 47.51, 39.38, and 65.23 nM, respectively, were obtained, while AP-Cell 1 and 3 could then successfully spot ASPH displayed on the tissues. Our study showed that the Counter-SELEX could be considered as a complementary method for Cell-SELEX to overcome the imperfectness of the negative selection step. Moreover, high-throughput nucleotide sequencing could help to shorten the overall process.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department
of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Research, Isfahan University of Medical Sciences, Isfahan 8174673461, I. R. Iran
| | - Abbas Ali Palizban
- Department
of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Research, Isfahan University of Medical Sciences, Isfahan 8174673461, I. R. Iran
| | - Hossein Khanahmad
- Department
of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, I. R. Iran
| | - Mohammad Reza Mofid
- Department
of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Research, Isfahan University of Medical Sciences, Isfahan 8174673461, I. R. Iran
- . Tel: +983137927047. Fax: +983136680011
| |
Collapse
|
9
|
Solhi E, Hasanzadeh M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed Pharmacother 2020; 132:110849. [PMID: 33068928 DOI: 10.1016/j.biopha.2020.110849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second most extended disease during the world with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome this problem. Aptamers can be employed as high-affinity tools for cancer detection. The utilization of aptamer-based strategy in cancer investigation and strategy shows new opportunities in biotechnology. The label-free system is an important method to study biomolecules in different sizes, such as biomarkers in real-time because of their greatest sensitivity, selectivity, and multi examination. In this review (with 75 references), excellent features of the label-free aptasensors on the sensitive and accurate monitoring of cancer biomarkers were discussed. Also, the role of advanced of nanomaterials on the construction of label-free aptasensors were investigated. In addition, application of different detection methods such as electrochemical, optical, electronic, and photoelectrochemical (PEC), electrochemiluminescence (ECL) were surveyed. Finally, advantages and limitation of different strategies on the early stage diagnosis of cancer biomarkers were discussed. This article has been updated until July 2020.
Collapse
Affiliation(s)
- Elham Solhi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Moutsiopoulou A, Broyles D, Dikici E, Daunert S, Deo SK. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902248. [PMID: 31313884 PMCID: PMC6715520 DOI: 10.1002/smll.201902248] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Indexed: 05/07/2023]
Abstract
The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor-quencher pairs such as fluorescent dyes, quantum dots, carbon-based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor-acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.
Collapse
Affiliation(s)
- Angeliki Moutsiopoulou
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
- Department of Chemistry Coral Gables, University of Miami, FL, 33146, USA
| | - David Broyles
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| | - Emre Dikici
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
- University of Miami Clinical and Translational Science Institute, Miami, FL, 33136, USA
| | - Sapna K Deo
- Leonard M. Miller School of Medicine, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
11
|
Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. NANO RESEARCH 2018; 11:4999-5016. [PMID: 31772723 PMCID: PMC6879063 DOI: 10.1007/s12274-018-2083-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall, bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery, and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.
Collapse
Affiliation(s)
- Danielle M Valcourt
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jenna Harris
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rachel S Riley
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan Dang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jianxin Wang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
- 4701 Ogletown Stanton Road, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
12
|
Molefe PF, Masamba P, Oyinloye BE, Mbatha LS, Meyer M, Kappo AP. Molecular Application of Aptamers in the Diagnosis and Treatment of Cancer and Communicable Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040093. [PMID: 30274155 PMCID: PMC6315466 DOI: 10.3390/ph11040093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays. Unfortunately, the control of these diseases depends on early detection and administration of effective treatment therefore any diagnostic delay is a huge challenge to curbing these diseases. Hence, there is a need for alternative diagnostic tools, discovery and development of novel therapeutic agents. Studies have demonstrated that aptamers could potentially offer one of the best solutions to these problems. Aptamers are short sequences of either DNA or RNA molecules, which are identified in vitro through a SELEX process. They are sensitive and bind specifically to target molecules. Their promising features suggest they may serve as better diagnostic agents and can be used as drug carriers for therapeutic purposes. In this article, we review the applications of aptamers in the theranostics of cancer and some infectious diseases.
Collapse
Affiliation(s)
- Philisiwe Fortunate Molefe
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
13
|
Jain S, Laederach A, Ramos SBV, Schlick T. A pipeline for computational design of novel RNA-like topologies. Nucleic Acids Res 2018; 46:7040-7051. [PMID: 30137633 PMCID: PMC6101589 DOI: 10.1093/nar/gky524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Designing novel RNA topologies is a challenge, with important therapeutic and industrial applications. We describe a computational pipeline for design of novel RNA topologies based on our coarse-grained RNA-As-Graphs (RAG) framework. RAG represents RNA structures as tree graphs and describes RNA secondary (2D) structure topologies (currently up to 13 vertices, ≈260 nucleotides). We have previously identified novel graph topologies that are RNA-like among these. Here we describe a systematic design pipeline and illustrate design for six broad design problems using recently developed tools for graph-partitioning and fragment assembly (F-RAG). Following partitioning of the target graph, corresponding atomic fragments from our RAG-3D database are combined using F-RAG, and the candidate atomic models are scored using a knowledge-based potential developed for 3D structure prediction. The sequences of the top scoring models are screened further using available tools for 2D structure prediction. The results indicate that our modular approach based on RNA-like topologies rather than specific 2D structures allows for greater flexibility in the design process, and generates a large number of candidate sequences quickly. Experimental structure probing using SHAPE-MaP for two sequences agree with our predictions and suggest that our combined tools yield excellent candidates for further sequence and experimental screening.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
- NYU-ECNU Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, North Zhongshan Road, 3663 Shanghai, China
| |
Collapse
|
14
|
Zhou W, Zhang Y, Zeng Y, Peng M, Li H, Sun S, Ma B, Wang Y, Ye M, Liu J. Screening and characterization of an Annexin A2 binding aptamer that inhibits the proliferation of myeloma cells. Biochimie 2018; 151:150-158. [PMID: 29906496 DOI: 10.1016/j.biochi.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease and is considered incurable. Annexin A2 (ANXA2) is closely related to the proliferation and adhesion of MM. Using protein-SELEX, we performed a screen for aptamers that bind GST-ANXA2 from a library, and GST protein was used for negative selection. The enrichment of the ssDNA pool was monitored by filter-binding assay during selection. After nine rounds of screening and high-throughput sequencing, we obtained six candidate aptamers that bind to the ANXA2 protein. The affinities of the candidate aptamers for ANXA2 were determined by ELONA. Binding of aptamer wh6 to the ANXA2 protein and to the MM cell was verified by aptamer pulldown experiment and flow cytometry, respectively. Aptamer wh6 binds the ANXA2 protein with good stability and has a dissociation constant in the nanomolar range. The binding specificity of aptamer wh6 was confirmed in vivo in nude mouse xenografts with MM cells and with MM bone marrow aspirates. Furthermore, aptamer wh6 can block MM cell adhesion to ANXA2 and block the proliferation of MM cells induced by ANXA2. In summary, wh6 can be considered a promising candidate tool for MM diagnosis and treatment.
Collapse
Affiliation(s)
- Weihua Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Biochemistry, College of Medicine, Jishou University, Jishou, 416000, China
| | - Yibin Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yayue Zeng
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Minyuan Peng
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Li
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Bianying Ma
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China.
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
15
|
Khan NI, Maddaus AG, Song E. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme. BIOSENSORS 2018; 8:E7. [PMID: 29342960 PMCID: PMC5872055 DOI: 10.3390/bios8010007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/23/2017] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
Recently, inkjet-printing has gained increased popularity in applications such as flexible electronics and disposable sensors, as well as in wearable sensors because of its multifarious advantages. This work presents a novel, low-cost immobilization technique using inkjet-printing for the development of an aptamer-based biosensor for the detection of lysozyme, an important biomarker in various disease diagnosis. The strong affinity between the carbon nanotube (CNT) and the single-stranded DNA is exploited to immobilize the aptamers onto the working electrode by printing the ink containing the dispersion of CNT-aptamer complex. The inkjet-printing method enables aptamer density control, as well as high resolution patternability. Our developed sensor shows a detection limit of 90 ng/mL with high target selectivity against other proteins. The sensor also demonstrates a shelf-life for a reasonable period. This technology has potential for applications in developing low-cost point-of-care diagnostic testing kits for home healthcare.
Collapse
Affiliation(s)
- Niazul Islam Khan
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Alec G Maddaus
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Edward Song
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA.
- Center for Advanced Materials and Manufacturing Innovation, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
16
|
Current and Prospective Protein Biomarkers of Lung Cancer. Cancers (Basel) 2017; 9:cancers9110155. [PMID: 29137182 PMCID: PMC5704173 DOI: 10.3390/cancers9110155] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is a malignant lung tumor with various histological variants that arise from different cell types, such as bronchial epithelium, bronchioles, alveoli, or bronchial mucous glands. The clinical course and treatment efficacy of lung cancer depends on the histological variant of the tumor. Therefore, accurate identification of the histological type of cancer and respective protein biomarkers is crucial for adequate therapy. Due to the great diversity in the molecular-biological features of lung cancer histological types, detection is impossible without knowledge of the nature and origin of malignant cells, which release certain protein biomarkers into the bloodstream. To date, different panels of biomarkers are used for screening. Unfortunately, a uniform serum biomarker composition capable of distinguishing lung cancer types is yet to be discovered. As such, histological analyses of tumor biopsies and immunohistochemistry are the most frequently used methods for establishing correct diagnoses. Here, we discuss the recent advances in conventional and prospective aptamer based strategies for biomarker discovery. Aptamers like artificial antibodies can serve as molecular recognition elements for isolation detection and search of novel tumor-associated markers. Here we will describe how these small synthetic single stranded oligonucleotides can be used for lung cancer biomarker discovery and utilized for accurate diagnosis and targeted therapy. Furthermore, we describe the most frequently used in-clinic and novel lung cancer biomarkers, which suggest to have the ability of differentiating between histological types of lung cancer and defining metastasis rate.
Collapse
|
17
|
Tawiah KD, Porciani D, Burke DH. Toward the Selection of Cell Targeting Aptamers with Extended Biological Functionalities to Facilitate Endosomal Escape of Cargoes. Biomedicines 2017; 5:biomedicines5030051. [PMID: 28837119 PMCID: PMC5618309 DOI: 10.3390/biomedicines5030051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/19/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022] Open
Abstract
Over the past decades there have been exciting and rapid developments of highly specific molecules to bind cancer antigens that are overexpressed on the surfaces of malignant cells. Nanomedicine aims to exploit these ligands to generate nanoscale platforms for targeted cancer therapy, and to do so with negligible off-target effects. Aptamers are structured nucleic acids that bind to defined molecular targets ranging from small molecules and proteins to whole cells or viruses. They are selected through an iterative process of amplification and enrichment called SELEX (systematic evolution of ligands by exponential enrichment), in which a combinatorial oligonucleotide library is exposed to the target of interest for several repetitive rounds. Nucleic acid ligands able to bind and internalize into malignant cells have been extensively used as tools for targeted delivery of therapeutic payloads both in vitro and in vivo. However, current cell targeting aptamer platforms suffer from limitations that have slowed their translation to the clinic. This is especially true for applications in which the cargo must reach the cytosol to exert its biological activity, as only a small percentage of the endocytosed cargo is typically able to translocate into the cytosol. Innovative technologies and selection strategies are required to enhance cytoplasmic delivery. In this review, we describe current selection methods used to generate aptamers that target cancer cells, and we highlight some of the factors that affect productive endosomal escape of cargoes. We also give an overview of the most promising strategies utilized to improve and monitor endosomal escape of therapeutic cargoes. The methods we highlight exploit tools and technologies that can potentially be incorporated in the SELEX process. Innovative selection protocols may identify aptamers with extended biological functionalities that allow effective cytosolic translocation of therapeutics. This in turn may facilitate successful translation of these platforms into clinical applications.
Collapse
Affiliation(s)
- Kwaku D Tawiah
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - David Porciani
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
Abstract
Aptamers are nucleic acids referred to as chemical antibodies as they bind to their specific targets with high affinity and selectivity. They are selected via an iterative process known as ‘selective evolution of ligands by exponential enrichment’ (SELEX). Aptamers have been developed against numerous cancer targets and among them, many tumor cell-membrane protein biomarkers. The identification of aptamers targeting cell-surface proteins has mainly been performed by two different strategies: protein- and cell-based SELEX, when the targets used for selection were proteins and cells, respectively. This review aims to update the literature on aptamers targeting tumor cell surface protein biomarkers, highlighting potentials, pitfalls of protein- and cell-based selection processes and applications of such selected molecules. Aptamers as promising agents for diagnosis and therapeutic approaches in oncology are documented, as well as aptamers in clinical development.
Collapse
|
19
|
Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 2017; 24:441-452. [PMID: 28504657 DOI: 10.1038/gt.2017.41] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
Collapse
Affiliation(s)
| | | | - S Pasley
- Akron Biotech, Boca Raton, FL, USA
| | | |
Collapse
|
20
|
de Almeida CEB, Alves LN, Rocha HF, Cabral-Neto JB, Missailidis S. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer. Int J Pharm 2017; 525:334-342. [PMID: 28373101 DOI: 10.1016/j.ijpharm.2017.03.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/09/2023]
Abstract
Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements.
Collapse
Affiliation(s)
- Carlos E B de Almeida
- Laboratório de Radiobiologia, Divisão de Física Médica, Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende S/N., Rio de Janeiro, RJ, CEP 22783-127, Brazil
| | - Lais Nascimento Alves
- Laboratório de Radiobiologia, Divisão de Física Médica, Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende S/N., Rio de Janeiro, RJ, CEP 22783-127, Brazil
| | - Henrique F Rocha
- Laboratório de Anticorpos Monoclonais, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, CEP 21040-900, Brazil
| | - Januário Bispo Cabral-Neto
- Laboratório de Radiobiologia, Divisão de Física Médica, Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende S/N., Rio de Janeiro, RJ, CEP 22783-127, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Brg. Trompowski-Cidade Universitária, Rio de Janeiro, RJ, CEP 21044-020, Brazil
| | - Sotiris Missailidis
- Laboratório de Anticorpos Monoclonais, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, CEP 21040-900, Brazil.
| |
Collapse
|
21
|
Ahmadzadeh-Raji M, Ghafar-Zadeh E, Amoabediny G. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1071. [PMID: 27420059 PMCID: PMC4970118 DOI: 10.3390/s16071071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
In this paper, a label-free aptamer based detection system (apta-DS) was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA) on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs) through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA) activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide)/N-hydroxysuccinimide (NHS). The cyclic voltammetry (CV) and chronopotentiometry (CP) methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO). In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study's results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.
Collapse
Affiliation(s)
- Mojgan Ahmadzadeh-Raji
- Department of Life Science Engineering, Faculty of New Sciences &Technologies, University of Tehran, Tehran 14395-1561, Iran.
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J1P3, Canada.
| | - Ghasem Amoabediny
- Department of Life Science Engineering, Faculty of New Sciences &Technologies, University of Tehran, Tehran 14395-1561, Iran.
- Department of Biotechnology and Pharmacy Engineering, Faculty of Chemical Engineering, University of Tehran, Tehran 4563-11155, Iran.
| |
Collapse
|