1
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
2
|
Bastin DJ, Quizi J, Kennedy MA, Kekre N, Auer RC. Current challenges in the manufacture of clinical-grade autologous whole cell vaccines for hematological malignancies. Cytotherapy 2022; 24:979-989. [PMID: 35562303 DOI: 10.1016/j.jcyt.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Autologous whole cell vaccines use a patient's own tumor cells as a source of antigen to elicit an anti-tumor immune response in vivo. Recently, the authors conducted a systematic review of clinical trials employing these products in hematological cancers that showed a favorable safety profile and trend toward efficacy. However, it was noted that manufacturing challenges limit both the efficacy and clinical implementation of these vaccine products. In the current literature review, the authors sought to define the issues surrounding the manufacture of autologous whole cell products for hematological cancers. The authors describe key factors, including the acquisition, culture, cryopreservation and transduction of malignant cells, that require optimization for further advancement of the field. Furthermore, the authors provide a summary of pre-clinical work that informs how the identified challenges may be overcome. The authors also highlight areas in which future basic research would be of benefit to the field. The goal of this review is to provide a roadmap for investigators seeking to advance the field of autologous cell vaccines as it applies to hematological malignancies.
Collapse
Affiliation(s)
- Donald J Bastin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Schulich School of Medicine, Western University, London, Canada
| | - Jennifer Quizi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Natasha Kekre
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada; Department of Surgery, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Xie S, Fan W, Yang C, Lei W, Pan H, Tong X, Wu Y, Wang S. Beclin1‑armed oncolytic Vaccinia virus enhances the therapeutic efficacy of R‑CHOP against lymphoma in vitro and in vivo. Oncol Rep 2021; 45:987-996. [PMID: 33469679 PMCID: PMC7860022 DOI: 10.3892/or.2021.7942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a form of lymphoid malignancy, with diffuse large B cell lymphoma (DLBCL) being the most common NHL isoform. Approximately half of patients with DLBCL are successfully cured via first-line Rituximab, Cyclophosphamide, Epirubicin, Vindesine, Prednisolone (R-CHOP) treatment. However, 30–40% of patients with DLBCL ultimately suffer from treatment-refractory or relapsed disease. These patients often suffer from high mortality rates owing to a lack of suitable therapeutic options, and all patients are at a high risk of serious treatment-associated dose-dependent toxicity. As such, it is essential to develop novel treatments for NHL that are less toxic and more efficacious. Oncolytic Vaccinia virus (OVV) has shown promise as a means of treating numerous types of cancer. Gene therapy strategies further enhance OVV-based therapy by improving tumor cell recognition and immune evasion. Beclin1 is an autophagy-associated gene that, when upregulated, induces excess autophagy and cell death. The present study aimed to develop an OVV-Beclin1 therapy capable of inducing autophagic tumor cell death. OVV-Beclin1 was able to efficiently kill NHL cells and to increase the sensitivity of these cells to R-CHOP, thereby decreasing the dose-dependent toxic side effects associated with this chemotherapeutic regimen. The combination of OVV-Beclin1 and R-CHOP also significantly improved tumor growth inhibition and survival in a BALB/c murine model system owing to the synergistic induction of autophagic cell death. Together, these findings suggest that OVV-Beclin1 infection can induce significant autophagic cell death in NHL, highlighting this as a novel means of inducing tumor cell death via a mechanism that is distinct from apoptosis and necrosis.
Collapse
Affiliation(s)
- Shufang Xie
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, P.R. China
| | - Weimin Fan
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chen Yang
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yi Wu
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
4
|
Overexpression of Smac by an Armed Vesicular Stomatitis Virus Overcomes Tumor Resistance. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:188-195. [PMID: 31312717 PMCID: PMC6610632 DOI: 10.1016/j.omto.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
Abstract
Despite reports of successful clinical cases, many tumors appear to resist infection by oncolytic viruses (OVs). To circumvent this problem, an armed vesicular stomatitis virus was constructed by inserting a transgene to express Smac/DIABLO during virus infection (VSV-S). Endogenous Smac in HeLa cells was diminished during wtVSV infection, whereas the Smac level was enhanced during VSV-S infection. Apoptosis was readily induced by VSV-S, but not wtVSV, infection. More importantly, the tumor volume was reduced to a larger extent when xenografts of 4T1 cells in BALB/c mice and OV-resistant T-47D cells in nude mice were intratumorally injected with VSV-S. VSV-S represents a novel mechanism to overcome tumor resistance, resulting in more significant tumor regression due to enhanced apoptosis.
Collapse
|
5
|
Mohebbi A, Ebrahimzadeh MS, Baghban Rahimi S, Saeidi M, Tabarraei A, Mohebbi SR, Shirian S, Gorji A, Ghaemi A. Non-replicating Newcastle Disease Virus as an adjuvant for DNA vaccine enhances antitumor efficacy through the induction of TRAIL and granzyme B expression. Virus Res 2018; 261:72-80. [PMID: 30599161 DOI: 10.1016/j.virusres.2018.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/02/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
The potential of non-replicating Newcastle Disease Virus (NDV) as an adjuvant for DNA vaccination remains to be elucidated. To assess the therapeutic effects of DNA vaccine (HPV-16 E7 gene) adjuvanted with NDV, female C57/BL6 mice were inoculated with murine TC-1 cells of human papillomavirus (HPV)-related carcinoma, expressing human papillomavirus 16 (HPV-16) E6/E7 antigens, and immunized with DNA vaccine alone or pretreated with NDV. One week after third immunization, Cytotoxic T lymphocytes (CTLs), splenocyte proliferation, cytokine balance (IFN-γ, IL-4 and IL-12 secretions) and intratumoral expression of cytotoxicity related proteins in tumor lysates were investigated. The results showed that treatment with non-replicating NDV prior to DNA vaccine induced tumor-specific cytolytic and splenocyte proliferation responses. The levels of cytokines IL-12, IL-4 and IFN-γ after treating with combined E7-DNA -non-replicating NDV (NDV-DNA Vaccine) were significantly higher than those of control groups. The intratumoral granzyme B and Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL)-mediated apoptosis was also significantly increased. Tumor therapeutic experiments showed that the NDV pretreatment could reduce the tumor progression of established E7-expressing TC-tumors. Taken together these data suggest that the significant antitumor responses evidenced during treatment with non-replicating NDV prior to DNA vaccine are due, in part, to strong E7-induced cellular immunity and enhanced expression of cytotoxicity related proteins in the tumor microenvironment. These observations indicated the potential of non-replicating NDV as an adjuvant for enhancing therapeutic DNA vaccines -induced immunity and antitumor responses.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Sanaz Baghban Rahimi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Gorji
- Department of Neurosurgery and Neurology, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27a, 48149, Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
6
|
Achard C, Surendran A, Wedge ME, Ungerechts G, Bell J, Ilkow CS. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine 2018; 31:17-24. [PMID: 29724655 PMCID: PMC6013846 DOI: 10.1016/j.ebiom.2018.04.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 02/09/2023] Open
Abstract
Oncolytic virus (OV) therapy is potentially a game-changing cancer treatment that has garnered significant interest due to its versatility and multi-modal approaches towards tumor eradication. In the field of cancer immunotherapy, the immunological phenotype of the tumor microenvironment (TME) is an important determinant of disease prognosis and therapeutic success. There is accumulating data that OVs are capable of dramatically altering the TME immune landscape, leading to improved antitumor activity alone or in combination with assorted immune modulators. Herein, we review how OVs disrupt the immunosuppressive TME and can be used strategically to create a "pro-immune" microenvironment that enables and promotes potent, long-lasting host antitumor immune responses.
Collapse
Affiliation(s)
- Carole Achard
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada
| | - Abera Surendran
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marie-Eve Wedge
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Guy Ungerechts
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Medical Oncology and Translational Oncology, National Center for Tumor Diseases (NCT), and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
7
|
Guo ZS, Bartlett DL. Editorial of the Special Issue: Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer. Biomedicines 2017; 5:biomedicines5030052. [PMID: 28837095 PMCID: PMC5618310 DOI: 10.3390/biomedicines5030052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs), either occurring naturally or through genetic engineering, can selectively infect, replicate in, and kill cancer cells, while leaving normal cells (almost) unharmed [...].
Collapse
Affiliation(s)
- Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Cui B, Cao X, Zou W, Wan Y, Wang N, Wang Y, Li P, Hua F, Liu Y, Zhang X, Li K, Lv X, Huang B, Hu Z. Regulation of immune-related diseases by multiple factors of chromatin, exosomes, microparticles, vaccines, oxidative stress, dormancy, protein quality control, inflammation and microenvironment: a meeting report of 2017 International Workshop of the Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine on Tumor Immunology. Acta Pharm Sin B 2017. [PMCID: PMC6281278 DOI: 10.1016/j.apsb.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immune cells play key roles in cancer and chronic
inflammatory disease. A better understanding of the mechanisms and risks will
help develop novel target therapies. At the 2017 International Workshop of the
Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine on
Tumor Immunology held in Beijing, China, on May 12, 2017, a number of speakers
reported new findings and ongoing studies on immune-related diseases such as
cancer, fibrotic disease, diabetes, and others. A considerably insightful
overview was provided on cancer immunity, tumor microenvironments, and new
immunotherapy for cancer. In addition, chronic inflammatory diseases were
discussed. These findings may offer new insights into targeted
immunotherapy.
Collapse
Affiliation(s)
- Bing Cui
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology,
Department of Immunology, Institute of Basic Medical Sciences and Peking Union
Medical College, Chinese Academy of Medical Sciences, Beijing
100005, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School
of Medicine, Ann Arbor, MI 48109, USA; The University of Michigan Comprehensive
Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Graduate
Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI
48109, USA
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8N
3Z5, Canada
| | - Ning Wang
- Laboratory for Cellular Biomechanics and Regenerative
Medicine, Department of Biomedical Engineering, School of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074,
China; Department of Mechanical Science and Engineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology,
National Center for International Research in Cell and Gene Therapy, Zhengzhou
University, Zhengzhou, 450001, China; School of Basic Medical Sciences, Academy
of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Center for
Molecular Oncology, Barts Cancer Institute, Queen Mary University of London,
London EC1M 6BQ, UK
| | - Pingping Li
- Diabetes Research Center of Chinese Academy of Medical
Sciences, Beijing 100050,
China
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Yuying Liu
- Institute of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing,
100050, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
- Institute of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing,
100050, China
| | - Xiaoxi Lv
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Bo Huang
- National Key Laboratory of Medical Molecular Biology,
Department of Immunology, Institute of Basic Medical Sciences and Peking Union
Medical College, Chinese Academy of Medical Sciences, Beijing
100005, China
- Department of Biochemistry & Molecular Biology,
Tongji Medical College, Huazhong University of Science & Technology, Wuhan,
430030, China; Clinical Immunology Center, Chinese Academy of Medical Sciences,
Beijing, 100050,
China
- Corresponding author at: National Key Laboratory of
Medical Molecular Biology, Department of Immunology, Institute of Basic Medical
Sciences and Peking Union Medical College, Chinese Academy of Medical Sciences,
Beijing 100005, China
| | - Zhuowei Hu
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
- Corresponding author. Tel.: +861083165034.
| |
Collapse
|
9
|
Guo ZS, Liu Z, Kowalsky S, Feist M, Kalinski P, Lu B, Storkus WJ, Bartlett DL. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front Immunol 2017; 8:555. [PMID: 28555136 PMCID: PMC5430078 DOI: 10.3389/fimmu.2017.00555] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
The concept of oncolytic virus (OV)-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD) of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME) for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers) have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.
Collapse
Affiliation(s)
- Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy Kowalsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J. Storkus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L. Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|