1
|
Souza AD, Rodrigues da Silva GH, Ribeiro L, Mitsutake H, Bordallo HN, Breitkreitz MC, Lima Fernandes PC, Moura LD, Yokaichiya F, Franco M, de Paula E. Fresh Carrier for an Old Topical Local Anesthetic: Benzocaine in Nanostructured Lipid Carriers. ACS Biomater Sci Eng 2024; 10:4958-4969. [PMID: 39074333 PMCID: PMC11322916 DOI: 10.1021/acsbiomaterials.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Nanostructured lipid carriers (NLC) have emerged as innovative drug delivery systems, offering distinct advantages over other lipid-based carriers, such as liposomes and solid lipid nanoparticles. Benzocaine (BZC), the oldest topical local anesthetic in use, undergoes metabolism by pseudocholinesterase, leading to the formation of p-aminobenzoic acid, a causative agent for allergic reactions associated with prolonged BZC usage. In order to mitigate adverse effects and enhance bioavailability, BZC was encapsulated within NLC. Utilizing a 23 factorial design, formulations comprising cetyl palmitate (solid lipid), propylene glycol monocaprylate (liquid lipid), and Pluronic F68 as surfactants were systematically prepared, with variations in the solid/liquid lipid mass ratios (60:40-80:20%), total lipid contents (15-25%), and BZC concentrations (1-3%). The optimized formulation underwent characterization by dynamic light scattering, differential scanning calorimetry, Raman imaging, X-ray diffraction, small-angle neutron scattering, nanotracking analysis, and transmission electron microscopy (TEM)/cryo-TEM, providing insights into the nanoparticle structure and the incorporation of BZC into its lipid matrix. NLCBZC exhibited a noteworthy encapsulation efficiency (%EE = 96%) and a 1 year stability when stored at 25 °C. In vitro kinetic studies and in vivo antinociceptive tests conducted in mice revealed that NLCBZC effectively sustained drug release for over 20 h and prolonged the anesthetic effect of BZC for up to 18 h. We therefore propose the use of NLCBZC to diminish the effective anesthetic concentration of benzocaine (from 20 to 3% or less), thus minimizing allergic reactions that follow the topical administration of this anesthetic and, potentially, paving the way for new routes of BZC administration in pain management.
Collapse
Affiliation(s)
- A. D. Souza
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
| | - G. H. Rodrigues da Silva
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
- Laboratório
Nacional de Biociências, Centro Nacional
de Pesquisa em Energia e Materiais, ZIP 13083-100 Campinas, São
Paulo, Brazil
| | - L.N.M. Ribeiro
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
| | - H. Mitsutake
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
- Niels
Bohr Institute, University of Copenhagen, ZIP 2100 Copenhagen, Denmark
| | - H. N. Bordallo
- Niels
Bohr Institute, University of Copenhagen, ZIP 2100 Copenhagen, Denmark
| | - M. C. Breitkreitz
- Departamento
de Química Analítica, Instituto
de Química, Unicamp, ZIP 13083-862 Campinas, São
Paulo, Brazil
| | - P. C. Lima Fernandes
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
| | - L. D. Moura
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
| | - F. Yokaichiya
- Departamento
de Física, Universidade Federal do
Paraná (UFPR), ZIP 81531-980 Curitiba, Paraná, Brazil
| | - M. Franco
- Instituto
de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, ZIP 05508-000 São
Paulo, São Paulo, Brazil
| | - E. de Paula
- Departamento
de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), ZIP 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Krüger-Genge A, Mauger O, Storsberg J, Schmidt C. Epigenetics-Shedding Light on the Path Ahead for Material Sciences. Diseases 2019; 7:diseases7020043. [PMID: 31208004 PMCID: PMC6631476 DOI: 10.3390/diseases7020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 11/28/2022] Open
Abstract
The harmonious regulation of bodily function is a necessity for healthy individuals. Looking from the viewpoint of material sciences, one can only marvel at the cellular factories, their renewal, and the overall control of messaging and control of responses. As aging progresses and/or pathologies arise, clinicians may be forced to look for replacement of organs/tissues with medical devices. Since all devices are tailored, a detailed understanding of developmental processes, including aberrant processes leading to pathologies, is crucial to provide clinicians with a suitable device. Although research in the field of epigenetics has produced effective therapeutics and diagnostic markers, our currently fragmented understanding of epigenetic processes as they relate to material development is inherently limited, with logical implications for the success of medical procedures. Here, we illustrate how material sciences for clinical applications, critically depend on all aspects of biomedical sciences, including the field of epigenetics.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| | - Olivia Mauger
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| | - Joachim Storsberg
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| | - Christian Schmidt
- Department of Biomaterials and Healthcare, Fraunhofer-Institute for Applied Polymer Research (IAP), Division of Life Science and Bioprocesses, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Low power blue LED exposure increases effects of doxorubicin on MDA-MB-231 breast cancer cells. Photodiagnosis Photodyn Ther 2018; 24:250-255. [PMID: 30063989 DOI: 10.1016/j.pdpdt.2018.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
Abstract
Patients with triple negative breast cancer can develop side effects as a result of chemotherapy. Photodynamic therapy may reduce these side effects if the chemotherapy agent could also act as a photosensitizer. Thus, the aim of this work was to evaluate cytotoxicity and reactive oxygen species production induced by doxorubicin and low power blue LED in breast cancer cultures. Cell viability and reactive oxygen species (ROS) in MDA-MB-231 cultures were evaluated in response to different doxorubicin concentrations and blue LED fluences. Compared with control, cell cultures only incubated with doxorubicin at 25 nM showed 23% of cell viability reduction while its combination with blue LED at 640 J/cm2 reduced 40% of cell viability after 24 h. After 48 h, reduction of cell viability raises to 40% in cell cultures only incubated with doxorubicin and 55% when combined with blue LED. Evaluation 30 min after treatment showed that cells incubated with doxorubicin and exposed to blue LED generated 22% more ROS than controls. Those results show that incubation with doxorubicin combined with exposure to low power blue LED is more cytotoxic and more effective to increase ROS levels in MDA-MB-231 cultures than incubation with doxorubicin alone.
Collapse
|