1
|
Garcia G, Chakravarty N, Paiola S, Urena E, Gyani P, Tse C, French SW, Danielpour M, Breunig JJ, Nathanson DA, Arumugaswami V. Differential Susceptibility of Ex Vivo Primary Glioblastoma Tumors to Oncolytic Effect of Modified Zika Virus. Cells 2023; 12:2384. [PMID: 37830597 PMCID: PMC10572118 DOI: 10.3390/cells12192384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Sophia Paiola
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Estrella Urena
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Priya Gyani
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
| | - Joshua J. Breunig
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Nair S, Mazzoccoli L, Jash A, Govero J, Bais SS, Hu T, Fontes-Garfias CR, Shan C, Okada H, Shresta S, Rich JN, Shi PY, Diamond MS, Chheda MG. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight 2021; 6:144619. [PMID: 33232299 PMCID: PMC7821591 DOI: 10.1172/jci.insight.144619] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a fatal human cancer in part because GBM stem cells are resistant to therapy and recurrence is inevitable. Previously, we demonstrated Zika virus (ZIKV) targets GBM stem cells and prevents death of mice with gliomas. Here, we evaluated the immunological basis of ZIKV-mediated protection against GBM. Introduction of ZIKV into the brain tumor increased recruitment of CD8+ T and myeloid cells to the tumor microenvironment. CD8+ T cells were required for ZIKV-dependent tumor clearance because survival benefits were lost with CD8+ T cell depletion. Moreover, while anti–PD-1 antibody monotherapy moderately improved tumor survival, when coadministered with ZIKV, survival increased. ZIKV-mediated tumor clearance also resulted in durable protection against syngeneic tumor rechallenge, which also depended on CD8+ T cells. To address safety concerns, we generated an immune-sensitized ZIKV strain, which was effective alone or in combination with immunotherapy. Thus, oncolytic ZIKV treatment can be leveraged by immunotherapies, which may prompt combination treatment paradigms for adult patients with GBM.
Collapse
Affiliation(s)
- Sharmila Nair
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Luciano Mazzoccoli
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arijita Jash
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sachendra S Bais
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tong Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hideho Okada
- Department of Neurological Surgery and.,Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, California, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, and.,Department of Neurosciences, University of California School of Medicine, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pharmacology and Toxicology and.,Sealy Center for Structural Biology and Molecular Biophysics and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology & Immunology.,Department of Molecular Microbiology.,The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, and
| | - Milan G Chheda
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Spectrum-Wide Exploration of Human Adenoviruses for Breast Cancer Therapy. Cancers (Basel) 2020; 12:cancers12061403. [PMID: 32486014 PMCID: PMC7352696 DOI: 10.3390/cancers12061403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Oncolytic adenoviruses (Ads) are promising tools for cancer therapeutics. However, most Ad-based therapies utilize Ad type 5 (Ad5), which displays unsatisfying efficiency in clinical trials, partly due to the low expression levels of its primary coxsackievirus and adenovirus receptor (CAR) on tumor cells. Since the efficacy of virotherapy strongly relies on efficient transduction of targeted tumor cells, initial screening of a broad range of viral agents to identify the most effective vehicles is essential. Using a novel Ad library consisting of numerous human Ads representing known Ad species, we evaluated the transduction efficiencies in four breast cancer (BC) cell lines. For each cell line over 20 Ad types were screened in a high-throughput manner based on reporter assays. Ad types featuring high transduction efficiencies were further investigated with respect to the percentage of transgene-positive cells and efficiencies of cellular entry in individual cell lines. Additionally, oncolytic assay was performed to test tumor cell lysis efficacy of selected Ad types. We found that all analyzed BC cell lines show low expression levels of CAR, while alternative receptors such as CD46, DSG-2, and integrins were also detected. We identified Ad3, Ad35, Ad37, and Ad52 as potential candidates for BC virotherapy.
Collapse
|
4
|
Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and Immunotherapy: Advancing Cancer Treatment by Combination. Cancers (Basel) 2020; 12:cancers12051295. [PMID: 32455560 PMCID: PMC7281656 DOI: 10.3390/cancers12051295] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Gene therapy with viral vectors has significantly advanced in the past few decades, with adenovirus being one of the most commonly employed vectors for cancer gene therapy. Adenovirus vectors can be divided into 2 groups: (1) replication-deficient viruses; and (2) replication-competent, oncolytic (OVs) viruses. Replication-deficient adenoviruses have been explored as vaccine carriers and gene therapy vectors. Oncolytic adenoviruses are designed to selectively target, replicate, and directly destroy cancer cells. Additionally, virus-mediated cell lysis releases tumor antigens and induces local inflammation (e.g., immunogenic cell death), which contributes significantly to the reversal of local immune suppression and development of antitumor immune responses ("cold" tumor into "hot" tumor). There is a growing body of evidence suggesting that the host immune response may provide a critical boost for the efficacy of oncolytic virotherapy. Additionally, genetic engineering of oncolytic viruses allows local expression of immune therapeutics, thereby reducing related toxicities. Therefore, the combination of oncolytic virus and immunotherapy is an attractive therapeutic strategy for cancer treatment. In this review, we focus on adenovirus-based vectors and discuss recent progress in combination therapy of adenoviruses with immunotherapy in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher J. LaRocca
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chikako Yanagiba
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-624-9131
| |
Collapse
|
5
|
Goedegebuure RSA, Vonk C, Kooij LP, Derks S, Thijssen VLJL. Combining Radiation Therapy With Interferons: Back to the Future. Int J Radiat Oncol Biol Phys 2020; 108:56-69. [PMID: 32068114 DOI: 10.1016/j.ijrobp.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/27/2022]
Abstract
Radiation therapy has been linked to the induction of an intratumoral type I interferon (IFN) response, which positively affects the response to treatment. This has spiked the interest to combine radiation therapy with IFN-based treatment. Interestingly, this combination treatment has been considered previously, since preclinical studies demonstrated a radiosensitizing effect of interferons. As a result, multiple clinical trials have been performed combining radiation therapy with interferons in different tumor types. Although potential benefit has been suggested, the outcomes of the trials are diverse and challenging to interpret. In addition, increased grade ≥3 toxicity frequently resulted in a negative recommendation regarding the combination therapy. The latter appears premature because many studies were small and several aspects of the combination treatment have not yet been sufficiently explored to justify such a definite conclusion. This review summarizes the available literature on this combination therapy, with a focus on IFN-α and IFN-β. Based on preclinical studies and clinical trials, we evaluated the potential opportunities and describe the current challenges. In addition, we identify several issues that should be addressed to fully exploit the potential benefit of this combinatorial treatment approach.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Christian Vonk
- Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Laura P Kooij
- Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sarah Derks
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Victor L J L Thijssen
- Amsterdam UMC, location VUmc, Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, location VUmc, Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B, Arashkia A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol 2018; 234:8636-8646. [PMID: 30515798 DOI: 10.1002/jcp.27850] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
LaRocca CJ, Warner SG. Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials. Clin Transl Med 2018; 7:35. [PMID: 30426287 PMCID: PMC6234197 DOI: 10.1186/s40169-018-0214-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022] Open
Abstract
Advances in the understanding of cancer immunotherapy and the development of multiple checkpoint inhibitors have dramatically changed the current landscape of cancer treatment. Recent large-scale phase III trials (e.g. PHOCUS, OPTiM) are establishing use of oncolytic viruses as another tool in the cancer therapeutics armamentarium. These viruses do not simply lyse cells to achieve their cancer-killing effects, but also cause dramatic changes in the tumor immune microenvironment. This review will highlight the major vector platforms that are currently in development (including adenoviruses, reoviruses, vaccinia viruses, herpesviruses, and coxsackieviruses) and how they are combined with checkpoint inhibitors. These vectors employ a variety of engineered capsid modifications to enhance infectivity, genome deletions or promoter elements to confer selective replication, and encode a variety of transgenes to enhance anti-tumor or immunogenic effects. Pre-clinical and clinical data have shown that oncolytic vectors can induce anti-tumor immunity and markedly increase immune cell infiltration (including cytotoxic CD8+ T cells) into the local tumor microenvironment. This "priming" by the viral infection can change a 'cold' tumor microenvironment into a 'hot' one with the influx of a multitude of immune cells and cytokines. This alteration sets the stage for subsequent checkpoint inhibitor delivery, as they are most effective in an environment with a large lymphocytic infiltrate. There are multiple ongoing clinical trials that are currently combining oncolytic viruses with checkpoint inhibitors (e.g. CAPTIVE, CAPRA, and Masterkey-265), and the initial results are encouraging. It is clear that oncolytic viruses and checkpoint inhibitors will continue to evolve together as a combination therapy for multiple types of cancers.
Collapse
Affiliation(s)
- Christopher J LaRocca
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Susanne G Warner
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Stepanenko AA, Chekhonin VP. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 2018; 679:11-18. [PMID: 30171937 DOI: 10.1016/j.gene.2018.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022]
Abstract
In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield. Truncation mutations in E3-19K or i-leader sequence or overexpression of adenovirus death protein (ADP) potently increase adenovirus progeny release and spread without affecting virus yield. Moreover, E3-19K protein, which was found to inhibit both major histocompatibility complex I (MHCI) and MHC-I chain-related A and B proteins (MICA/MICB) expression on the cell surface, protecting infected cells from T-lymphocyte and natural killer (NK) cell attack, may be tailored to selectively target only MHCI or MICA/MICB, or to lose the ability to downregulate both. At last, E3-19K protein may be exploited to deliver tumor-associated epitopes directly to the endoplasmic reticulum for loading MHCI in the transporter associated with antigen processing (TAP)-deregulated cells.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia
| |
Collapse
|
9
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
10
|
Guo ZS, Bartlett DL. Editorial of the Special Issue: Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer. Biomedicines 2017; 5:biomedicines5030052. [PMID: 28837095 PMCID: PMC5618310 DOI: 10.3390/biomedicines5030052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs), either occurring naturally or through genetic engineering, can selectively infect, replicate in, and kill cancer cells, while leaving normal cells (almost) unharmed [...].
Collapse
Affiliation(s)
- Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|