1
|
Franchi-Mendes T, Silva M, Carreira MC, Cartaxo AL, Vale P, Karakaidos P, Klinakis A, Fernandes-Platzgummer A, da Silva CL. Xenogeneic-free platform for the isolation and scalable expansion of human bladder smooth muscle cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00878. [PMID: 40094098 PMCID: PMC11909460 DOI: 10.1016/j.btre.2025.e00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/19/2025]
Abstract
Introduction Smooth muscle cells (SMC) play a crucial role in bladder tissue engineering strategies. Scalable, Good Manufacturing Practice (GMP)-compliant platforms are essential for producing clinically relevant cell numbers. Materials & Methods A gamma-irradiated human platelet lysate (HPL) supplement was used to develop a xeno(geneic)-free process for the isolation and scalable expansion of human bladder-derived SMC. Results Cells were isolated using an explant-based technique and expanded ex vivo, expressing typical SMC markers (α-SMA, desmin, caldesmon and SM22-α). Cell culture was successfully scaled-up using spinner flasks combined with plastic microcarriers, starting with a 2.8 × 103 cells/cm2 inoculum (i.e. 1 × 106 cells). Cell-microcarrier adhesion rates exceeded 80% within 24 hours with fold expansion ranging from 3.5 to 16.8 after 7 days, dependent on donor variability. Harvested cells retained their SMC phenotype. Conclusions This xeno-free, GMP compliant process enables scalable manufacturing of human bladder-derived SMC while preserving cell identity, potentially advancing clinical applications in bladder engineering.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Catarina Carreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Vale
- Urology Department, Hospital CUF Descobertas, Lisboa, Portugal
| | | | | | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Faegh A, Jahani S, Chinisaz F, Baghaei H, Majidi Zolbin M. Stem cell therapy for bladder regeneration: A comprehensive systematic review. Regen Ther 2025; 28:191-200. [PMID: 39811066 PMCID: PMC11729686 DOI: 10.1016/j.reth.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells. We excluded non-English studies, review articles, and manuscripts that met the other exclusion criteria. Among 43 included studies, comparative studies demonstrated the similar or superior potentiality of stem cells to regenerate tissues and improve bladder function compared with autologous cells. Furthermore, data suggest an increased use of bio-synthetic scaffolds and their appropriate bio-compatibility with stem cells. The evidence establishes that adipose-derived and bone marrow-derived mesenchymal stem cells are the most frequently used stem cells. And both are suitable for urothelium and smooth muscle formation along with the capability of bone marrow-derived mesenchymal stem cells for lamina propria formation. Additionally, the competency of smooth muscle-derived progenitor cells, urine-derived stem cells, umbilical mesenchymal SCs for smooth muscle and urothelium regeneration, and the capability of hair follicle stem cells for smooth muscle formation are demonstrated. Also, the superiority of endothelial progenitor cells for neo-vascularization and smooth muscle progenitor cells for neuron formation are demonstrated. In addition to adding growth factors to the culturing media, hypoxic conditions and intra-peritoneal incubation are introduced as promoter conditions that can improve histological and physiological components. Available evidence is limited, although it suggests the precious capability of stem cells for bladder regeneration.
Collapse
Affiliation(s)
- Ali Faegh
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jahani
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Chinisaz
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamoon Baghaei
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Goedegebuure M, Bury MI, Wang X, Sanfelice P, Cammarata F, Wang L, Sharma TT, Rajinikanth N, Karra V, Siddha V, Sharma AK, Ameer GA. A biodegradable microgrooved and tissue mechanocompatible citrate-based scaffold improves bladder tissue regeneration. Bioact Mater 2024; 41:553-563. [PMID: 39246838 PMCID: PMC11380464 DOI: 10.1016/j.bioactmat.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Chronic bladder dysfunction due to bladder disease or trauma is detrimental to affected patients as it can lead to increased risk of upper urinary tract dysfunction. Current treatment options include surgical interventions that enlarge the bladder with autologous bowel tissue to alleviate pressure on the upper urinary tract. This highly invasive procedure, termed bladder augmentation enterocystoplasty (BAE), significantly increases the risk of patient morbidity and mortality due to the incompatibility between bowel and bladder tissue. Therefore, patients would significantly benefit from an alternative treatment strategy that can regenerate healthy tissue and restore overall bladder function. Previous research has demonstrated the potential of citrate-based scaffolds co-seeded with bone marrow-derived stem/progenitor cells as an alternative graft for bladder augmentation. Recognizing that contact guidance can potentially influence tissue regeneration, we hypothesized that microtopographically patterned scaffolds would modulate cell responses and improve overall quality of the regenerated bladder tissue. We fabricated microgrooved (MG) scaffolds using the citrate-based biomaterial poly (1,8-octamethylene-citrate-co-octanol) (POCO) and co-seeded them with human bone marrow-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem/progenitor cells (HSPCs). MG POCO scaffolds supported MSC and HSPC attachment, and MSC alignment within the microgrooves. All scaffolds were characterized and assessed for bladder tissue regeneration in an established nude rat bladder augmentation model. In all cases, normal physiological function was maintained post-augmentation, even without the presence of stem/progenitor cells. Urodynamic testing at 4-weeks post-augmentation for all experimental groups demonstrated that bladder capacity increased and bladder compliance was normal. Histological evaluation of the regenerated tissue revealed that cell-seeded scaffolds restored normal bladder smooth muscle content and resulted in increased revascularization and peripheral nerve regeneration. The presence of microgrooves on the cell-seeded scaffolds increased microvasculature formation by 20 % and urothelial layer thickness by 25 % in the regenerating tissue. Thus, this work demonstrates that microtopography engineering can influence bladder tissue regeneration to improve overall anatomical structure and re-establish bladder physiology.
Collapse
Affiliation(s)
- Madeleine Goedegebuure
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Matthew I. Bury
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
| | - Pasquale Sanfelice
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Federico Cammarata
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Larry Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tiffany T. Sharma
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nachiket Rajinikanth
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vikram Karra
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Vidhika Siddha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K. Sharma
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Division of Urology, Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Chicago, IL, USA
- International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Chemistry for Life Processes Institute, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Zhao F, Yang T, Zhou L, Zhao J, Liu J, Ping W, Zhou C, Qin Z, Jia R. Construction of tissue-engineered bladders using an artificial acellular nanocomposite scaffold loaded with stromal vascular fraction secretome. Acta Biomater 2023:S1742-7061(23)00304-5. [PMID: 37390857 DOI: 10.1016/j.actbio.2023.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Tissue engineering approaches offer promising alternative strategies for reconstructing bladder tissue; however, the low retention of transplanted cells and the possible risk of rejection limit their therapeutic efficacy. Clinical applicability is further limited by the lack of suitable scaffold materials to support the needs of various cell types. In the present study, we developed an artificial nanoscaffold system consisting of stromal vascular fraction (SVF) secretome (Sec) loaded onto zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, which were then incorporated into bladder acellular matrix. This artificial acellular nanocomposite scaffold (ANS) can achieve gradient degradation and slowly release SVF-Sec to promote tissue regeneration. Furthermore, even after long-term cryopreservation, this completely acellular bladder nanoscaffold material still maintains its efficacy. In a rat bladder replacement model, ANS transplantation demonstrated potent proangiogenic ability and induced M2 macrophage polarization to promote tissue regeneration and restore bladder function. Our study demonstrates the safety and efficacy of the ANS, which can play a stem cell-like role while avoiding the disadvantages of cell therapy. Furthermore, the ANS can replace the bladder regeneration model based on cell-binding scaffold materials and has the potential for clinical application. STATEMENT OF SIGNIFICANCE: This study aimed to develop a gradient-degradable artificial acellular nanocomposite scaffold (ANS) loaded with stromal vascular fraction (SVF) secretome for rehabilitating bladders. Using various in vitro methods as well as rat- and zebrafish-based in vivo models, the developed ANS was assessed for efficacy and safety. Results indicated that the ANS achieved gradient degradation and slowly released the SVF secretome to promote tissue regeneration, even after long-term cryopreservation. Furthermore, ANS transplantation demonstrated a potent pro-angiogenic ability and induced M2 macrophage polarization to promote tissue regeneration and restore bladder function in a bladder replacement model. Our study demonstrates that ANS may replace bladder regeneration models based on cell-binding scaffold materials and have potential clinical application.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Wenwen Ping
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| |
Collapse
|
5
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Abstract
BACKGROUND The treatment of neurogenic bladder (NB) is a challenge because conventional therapy often fails. Sacral neuromodulation (SNM) is a minimally invasive technique and an unconventional treatment for neurogenic bladder. Its research is still in the exploratory stage. The research on its effectiveness and safety is not clear. OBJECTIVE To assess the effectiveness and safety of sacral neuromodulation (SNM) for neurogenic bladder (NB). METHODS By searching the PubMed databases and Cochrane Library databases, combined with the method of literature tracing, the clinical researches and works on neurogenic bladder and sacral neuromodulation therapy were collected. Two reviewers independently selected and extracted data, (1) determine whether the study meets the inclusion criteria and exclude the literature that meets the exclusion criteria. (2) Researchers' screening results and data, if there are differences in the results, will be discussed to eliminate the differences. (3) Read the full text of the literature carefully to determine the final literature to be included. (4) The relevant data of 11 independent studies, a total of 291 patients, were systematically reviewed using review manager 5.3 software. RESULTS This research included 11 independent studies with a total of 291 patients. The improvements of main outcomes before and after SNM therapy were significant: incontinence episodes /24 h (WMD -2.52; 95%CI-3.14-1.90; p <0.001), frequency/24 h (WMD-5.96; 95%CI -6.27,-5.66; p <0.001), voiding volume (WMD 116.09 mL; 95%CI 86.68,145.51; p <0.001), cystometric capacity (WMD 129.84 mL; 95%CI 100.53, 159.15; p <0.001), post-void residual volume (WMD-198.00 mL; 95%CI-264.60, -131.40; p <0.001), clean intermittent self-catheterization/24 h (WMD-2.48; 95%CI -2.96, -2.00; p <0.001). CONCLUSION This systematic review indicated that the sacral neuromodulation treatment for neurogenic bladder was effective and safe.
Collapse
Affiliation(s)
- ZengGang Wei
- Department of Urology, Liangxiang Hospital of Beijing Fangshan District, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - JianPing Hou
- Department of Urology, Liangxiang Hospital of Beijing Fangshan District, Beijing, China
| |
Collapse
|
7
|
Xiao S, Wang P, Zhao J, Ling Z, An Z, Fu Z, Fu W, Zhou J, Zhang X. Bladder Acellular Matrix Prepared by a Self-Designed Perfusion System and Adipose-Derived Stem Cells to Promote Bladder Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:794603. [PMID: 35814010 PMCID: PMC9257038 DOI: 10.3389/fbioe.2022.794603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The bladder patch constructed with the bladder acellular matrix (BAM) and adipose-derived stem cells (ASCs) was incubated with the omentum for bladder reconstruction in a rat model of bladder augmentation cystoplasty. A self-designed perfusion system and five different decellularization protocols were used to prepare the BAM. Finally, an optimal protocol (group C) was screened out by comparing the cell nucleus residue, collagen structure preservation and biologically active components retention of the prepared BAM. ASCs-seeded (BAM-ASCs group) and unseeded BAM (BAM group) were incubated with the omentum for 7 days to promote neovascularization and then perform bladder reconstruction. Hematoxylin and eosin and Masson’s trichrome staining indicated that the bladder patches in the BAM-ASCs group could better regenerate the bladder wall structure compared to the BAM group. Moreover, immunofluorescence analyses demonstrated that the ASCs could promote the regeneration of smooth muscle, neurons and blood vessels, and the physiological function (maximal bladder capacity, max pressure prior to voiding and bladder compliance) restoration in the BAM-ASCs group. The results demonstrated that the self-designed perfusion system could quickly and efficiently prepare the whole bladder scaffold and confirmed that the prepared BAM could be used as the scaffold material for functional bladder tissue engineering applications.
Collapse
Affiliation(s)
- Shuwei Xiao
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Pengchao Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Urology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Jian Zhao
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ziyan An
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhouyang Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Weijun Fu
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Weijun Fu, ; Jin Zhou,
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Weijun Fu, ; Jin Zhou,
| | - Xu Zhang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Osborn SL, Mah LW, Ely EV, Ana S, Huynh C, Ujagar NS, Chan SC, Hsiao P, Hu JC, Chan YY, Christiansen BA, Kurzrock EA. Autologous regeneration of blood vessels in urinary bladder matrices provides early perfusion after transplant to the bladder. J Tissue Eng Regen Med 2022; 16:718-731. [PMID: 35567775 DOI: 10.1002/term.3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Large animal testing and clinical trials using bioengineered bladder for augmentation have revealed that large grafts fail due to insufficient blood supply. To address this critical issue, an in vivo staged implant strategy was developed and evaluated to create autologous, vascularized bioengineered bladder tissue with potential for clinical translation. Pig bladders were used to create acellular urinary bladder matrices (UBMs), which were implanted on the rectus abdominus muscles of rats and pigs to generate cellular and vascular grafts. Rectus-regenerated bladder grafts (rrBGs) were highly cellularized and contained an abundance of CD31-positive blood vessels, which were shown to be functional by perfusion studies. Muscle patterns within grafts showed increased smooth muscle formation over time and specifically within the detrusor compartment, with no evidence of striated muscle. Large, autologous rrBGs were transplanted to the pig bladder after partial cystectomy and compared to transplantation of control UBMs at 2 weeks and 3 months post-transplant. Functional, ink-perfused blood vessels were found in the central portion of all rrBGs at 2 weeks, while UBM grafts were significantly deteriorated, contracted and lacked central cellularization and vascularization. By 3 months, rrBGs had mature smooth muscle bundles and were morphologically similar to native bladder. This staged implantation technique allows for regeneration and harvest of large bladder grafts that are morphologically similar to native tissue with functional vessels capable of inosculating with host bladder vessels to provide quick perfusion to the central area of the large graft, thereby preventing early ischemia and contraction.
Collapse
Affiliation(s)
- Stephanie L Osborn
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA.,Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA
| | - Leanna W Mah
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Erica V Ely
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA.,Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Stefania Ana
- Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA.,Department of Biological Sciences, CIRM Bridges program, California State University, Sacramento, California, USA
| | - Christina Huynh
- Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA.,Department of Biological Sciences, CIRM Bridges program, California State University, Sacramento, California, USA
| | - Naveena S Ujagar
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Serena C Chan
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Philip Hsiao
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jonathan C Hu
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Yvonne Y Chan
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Eric A Kurzrock
- Department of Urologic Surgery, University of California Davis School of Medicine, Sacramento, California, USA.,Stem Cell Program, University of California, Davis Institute for Regenerative Cures, Sacramento, California, USA
| |
Collapse
|
9
|
Xiao S, Wang P, Zhao J, Ling Z, An Z, Fu Z, Fu W, Zhang X. Bi-layer silk fibroin skeleton and bladder acellular matrix hydrogel encapsulating adipose-derived stem cells for bladder reconstruction. Biomater Sci 2021; 9:6169-6182. [PMID: 34346416 DOI: 10.1039/d1bm00761k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A scaffold, constructed from a bi-layer silk fibroin skeleton (BSFS) and a bladder acellular matrix hydrogel (BAMH) encapsulated with adipose-derived stem cells (ASCs), was developed for bladder augmentation in a rat model. The BSFS, prepared from silk fibroin (SF), had good mechanical properties that allowed it to maintain the scaffold shape and be used for stitching. The prepared BAM was digested by pepsin and the pH was adjusted to harvest the BAMH that provided an extracellular environment for the ASCs. The constructed BSFS-BAMH-ASCs and BSFS-BAMH scaffolds were wrapped in the omentum to promote neovascularization and then used for bladder augmentation; at the same time, a cystotomy was used as the condition for the control group. Histological staining and immunohistochemical analysis confirmed that the omentum incubation could promote scaffold vascularization. Hematoxylin and eosin and Masson's trichrome staining indicated that the BSFS-BAMH-ASCs scaffold regenerated the bladder wall structure. In addition, immunofluorescence analyses confirmed that the ASCs could promote the regeneration of smooth muscle, neurons and blood vessels and the restoration of physiological function. These results demonstrated that the BSFS-BAMH-ASCs may be a promising scaffold for promoting bladder wall regeneration and the restoration of physiological function of the bladder in a rat bladder augmentation model.
Collapse
Affiliation(s)
- Shuwei Xiao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Pengchao Wang
- Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China and Department of Urology, Hainan Hospital of PLA General Hospital, Hai tang Bay, Sanya City, Hainan Province 572013, China
| | - Jian Zhao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhengyun Ling
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Ziyan An
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhouyang Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Weijun Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
10
|
Tsotridou E, Loukovitis E, Tsiropoulos GN, Zapsalis K, Pentara I, Tzima K, Eminidou V, Anogeianakis G. Radiation treatment methods in uveal melanoma. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2021; 10:32-42. [PMID: 37641625 PMCID: PMC10460216 DOI: 10.51329/mehdiophthal1419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background The most frequent primary ocular malignancy in the western world is the uveal melanoma. While it mainly affects Caucasians, it is extremely uncommon among non-Caucasians. Continuous improvement in therapies for local treatment has allowed sparing of the eye, although this approach apparently does not improve survival. The present review aimed to explain different radiotherapy (RT) methods and compare the pros and cons of each method, along with the main complications that may be encountered in the treatment of uveal melanoma. Methods Relevant papers published between September 2009 and January 2021 were retrieved, reviewed, and screened. Four databases, including PubMed, MEDLINE, Google Scholar, and GeneCards, were searched for this purpose. Results Forty-one relevant articles were identified. Based on the selected papers, we highlighted the advantages and disadvantages of the different RT methods that have allowed sparing of the eye, even though they have not, as yet, improved survival. We listed a detailed comparison between therapies that allow an educated choice among the different available RT methods. Conclusions The choice of uveal melanoma management is determined by the location of the tumor and volume of the extraocular extent. At present, there is no gold standard for the management of all ocular melanomas, and each case should be approached individually. Therefore, classification is a valuable prognostic tool. Many cases in cT3-4 classification categories are treated by primary enucleation and conservative treatment follow-up, while in cT2 and most cT1 classifications (i.e., 3.1-6.0-mm tumor thickness), several forms of RT are used.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Association for Training in Biomedical Technology, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Loukovitis
- Association for Training in Biomedical Technology, Thessaloniki, Greece
- Department of Ophthalmology, 424 General Military Hospital, Thessaloniki, Greece
| | - Georgios N. Tsiropoulos
- Association for Training in Biomedical Technology, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Swiss Visio Montchoisi, Lausanne, Switzerland
| | - Konstantinos Zapsalis
- Association for Training in Biomedical Technology, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iro Pentara
- Association for Training in Biomedical Technology, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Tzima
- Association for Training in Biomedical Technology, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Valeria Eminidou
- Association for Training in Biomedical Technology, Thessaloniki, Greece
| | | |
Collapse
|
11
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Zhao F, Zhou L, Xu Z, Xu L, Xu Z, Ping W, Liu J, Zhou C, Wang M, Jia R. Hypoxia-Preconditioned Adipose-Derived Endothelial Progenitor Cells Promote Bladder Augmentation. Tissue Eng Part A 2020; 26:78-92. [PMID: 31238789 DOI: 10.1089/ten.tea.2019.0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhongle Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenwen Ping
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Sharma S, Gupta DK. Tissue Engineering and Stem Cell Therapy in Pediatric Urology. J Indian Assoc Pediatr Surg 2019; 24:237-246. [PMID: 31571753 PMCID: PMC6752070 DOI: 10.4103/jiaps.jiaps_77_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The rapidly expanding field of tissue engineering along with stem cell therapy has a promising future in pediatric urological conditions. The initial struggle seemed difficult in renal regeneration but a functional biounit has been developed. Urine excretion has been demonstrated successfully from stem cell-generated embryonic kidneys. Three-dimensional (3D) stem cell-derived organoids are the new paradigm in research. Techniques to regenerate bladder tissue have reached the clinic, and the urethra is close behind. 3D bioprinted urethras would soon be available. Artificial germ cells produced from mouse pluripotent stem cells have been shown to give rise to live progeny. Myoblast and fibroblast therapy has been safely and effectively used for urinary incontinence. Stress urinary incontinence has been clinically treated with muscle-derived stem cells. Skeletal muscle-derived stem cells have been shown to get converted into smooth muscle cells when implanted into the corpora cavernosa in animal models. This review encompasses the various experimental and clinical developments in this field that can benefit pediatric urological conditions with the contemporary developments in the field.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Devendra K. Gupta
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
O'Halloran N, Khan S, Gilligan K, Dwyer R, Kerin M, Lowery A. Oncological Risk in Autologous Stem Cell Donation for Novel Tissue-Engineering Approaches to Postmastectomy Breast Regeneration. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2019; 13:1178223419864896. [PMID: 31555047 PMCID: PMC6753512 DOI: 10.1177/1178223419864896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/30/2023]
Abstract
Adipose tissue engineering using adipose-derived stem cells (ADSCs) has emerged
as an opportunity to develop novel approaches to postmastectomy breast
reconstruction with the potential for an autologous tissue source with a natural
appearance and texture. As of yet, the role of ADSCs in breast cancer
development and metastasis is not completely understood; therefore, we must
consider the oncological safety of employing an autologous source of ADSCs for
use in breast regeneration. This study investigated the regenerative properties
of ADSCs isolated from breast cancer patients, including those who had received
neoadjuvant chemotherapy, and noncancer controls. The ADSCs were characterised
for several parameters central to tissue regeneration, including cell viability,
proliferation, differentiation potential, and cytokine secretion. A stem cell
population was isolated and confirmed by flow cytometry and multilineage
differentiation. There was no difference in cell phenotype or surface antigen
expression between ADSCs from different sources. Adipose-derived stem cells
isolated from the breast of cancer patients exhibited reduced adipogenic
differentiation potential compared with ADSCs from other sources. The greatest
degree of adipogenic differentiation was observed in ADSCs isolated from the
subcutaneous abdominal fat of noncancer controls. The proliferation rate of
ADSCs isolated from the breast of cancer patients was increased compared with
other sources; however, it was decreased in ADSCs isolated from breast cancer
patients who had recently been treated with neoadjuvant chemotherapy. A number
of cytokines were detected in the cell conditioned media of ADSCs from different
sources, including matrix metalloproteinase-2 (MMP-2), which was detected at
higher levels in the secretome of ADSCs from breast cancer patients compared
with noncancer controls. This study provides important information relating to
the suitability of ADSCs as an autologous cell source for adipose tissue
engineering in postcancer reconstruction. Results indicate that while the
surface phenotype does not differ, the differentiation capacity, proliferative
rate, and secreted cytokine profile are affected by the presence or treatment of
breast cancer. These findings support further investigation into the
regenerative potential of these ADSCs, if they are to be considered in clinical
reconstructive strategies.
Collapse
Affiliation(s)
- Niamh O'Halloran
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Sonja Khan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Katie Gilligan
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Roisin Dwyer
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Michael Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Aoife Lowery
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Directed differentiation of human induced pluripotent stem cells into mature stratified bladder urothelium. Sci Rep 2019; 9:10506. [PMID: 31324820 PMCID: PMC6642190 DOI: 10.1038/s41598-019-46848-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
For augmentation or reconstruction of urinary bladder after cystectomy, bladder urothelium derived from human induced pluripotent stem cells (hiPSCs) has recently received focus. However, previous studies have only shown the emergence of cells expressing some urothelial markers among derivatives of hiPSCs, and no report has demonstrated the stratified structure, which is a particularly important attribute of the barrier function of mature bladder urothelium. In present study, we developed a method for the directed differentiation of hiPSCs into mature stratified bladder urothelium. The caudal hindgut, from which the bladder urothelium develops, was predominantly induced via the high-dose administration of CHIR99021 during definitive endoderm induction, and this treatment subsequently increased the expressions of uroplakins. Terminal differentiation, characterized by the increased expression of uroplakins, CK13, and CK20, was induced with the combination of Troglitazone + PD153035. FGF10 enhanced the expression of uroplakins and the stratification of the epithelium, and the transwell culture system further enhanced such stratification. Furthermore, the barrier function of our urothelium was demonstrated by a permeability assay using FITC-dextran. According to an immunohistological analysis, the stratified uroplakin II-positive epithelium was observed in the transwells. This method might be useful in the field of regenerative medicine of the bladder.
Collapse
|
16
|
Buhl M, Kloskowski T, Jundzill A, Gagat M, Balcerczyk D, Adamowicz J, Grzanka A, Nowacki M, Drewa G, Olszewska-Słonina D, Drewa T, Pokrywczynska M. The different expression of key markers on urothelial holoclonal, meroclonal, and paraclonal cells in in vitro culture. Cell Biol Int 2019; 43:456-465. [PMID: 30729622 DOI: 10.1002/cbin.11109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
Urothelial cell populations which differ in morphology and proliferation capacities can be isolated from the urinary bladder. The goal of this study was to analyze a clonal, proliferative, and self-renewing potential of porcine urothelial cells and to compare expression of selected adhesion and tight junction molecules, urothelial and stem cell markers for the urothelial clone types. Urothelial cells were isolated from 10 porcine urinary bladders. Three different clone types: holoclone-, meroclone-and paraclone-like colonies were identified based on their morphology. To characterize and compare the urothelial clones the immunofluorescent stains were performed. Expression of pancytokeratin (PanCK), Ki-67 and p63 was higher for holoclone- like cells compared to meroclone-and paraclone-like cells (P < 0.05). Meroclone-like cells expressed higher levels of p63 compared to paraclone- like cells (P < 0.05). The level of Ki-67 and PanCK for meroclone- and paraclone- like cells was comparable (P > 0.05). β1 and β4 integrins were not expressed. Expression of zonula occludens-1 (ZO-1) in cell-cell junctions for paraclone-, meroclone-and holoclone-like cells was 17.6 ± 0.6, 14.7 ± 0.5, and 16.1 ± 0.4, respectively. The results of actin filaments (F-actin) expression were 253,634 ± 6,920 for meroclone-like cells, 198,512 ± 7,977 for paraclone-like cells and 133,544 ± 3,169 for holoclone-like cells. Three urothelial cell types with differing features can be isolated from the bladder. Holoclone-like cells are the richest in stem cells and should be used in further studies for construction of neo-bladder or neo-conduit using tissue engineering methods.
Collapse
Affiliation(s)
- Monika Buhl
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Embriology and Histology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Daria Balcerczyk
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Jan Adamowicz
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Embriology and Histology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Maciej Nowacki
- Chair and Department of Surgical Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | | | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Nicolaus Copernicus University University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Poland
| |
Collapse
|
17
|
Wang Y, Zhou S, Yang R, Zou Q, Zhang K, Tian Q, Zhao W, Zong L, Fu Q. Bioengineered bladder patches constructed from multilayered adipose-derived stem cell sheets for bladder regeneration. Acta Biomater 2019; 85:131-141. [PMID: 30553012 DOI: 10.1016/j.actbio.2018.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Cell-seeded scaffolds are a common route of cell transplantation for bladder repair and reconstruction. However, when cell suspensions are harvested, proteolytic enzymes often cause extracellular matrix damage and loss of intercellular junctions. To overcome this problem, we developed a bioengineered three-dimensional bladder patch comprising porous scaffolds and multilayered adipose-derived stem cell (ASC) sheets, and evaluated its feasibility for bladder regeneration in a rat model. Adipose-derived stem cells (ASCs) were labeled with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles. ASC patches were constructed using multilayered USPIO-labeled ASC sheets and porous polyglycolic acid scaffolds. To monitor the distribution and localization of bioengineered bladder patches in live animals, magnetic resonance imaging (MRI) was performed 2 weeks, 4 weeks and 8 weeks after transplantation. The bladder regenerative potential of ASC patches was further evaluated by urodynamic and histological analysis. Scanning electron microscopy indicated that cell sheets adhered tightly to the scaffold. MRI showed hypointense signals that lasted up to 8 weeks at the site of USPIO-labeled ASC sheet transplants. Immunofluorescence demonstrated that these tissue-engineered bladder patches promoted regeneration of urothelium, smooth muscle, neural cells and blood vessels. Urodynamic testing revealed that the ASC patch restored bladder function with augmented capacity. The USPIO-labeled ASC patch provides a promising perspective on image-guided tissue engineering and holds great promise as a safe and effective therapeutic strategy for bladder regeneration. STATEMENT OF SIGNIFICANCE: Adipose-derived stem cell (ASC) sheets avoid enzymatic dissociation and preserve the cell-to-cell interactions and extracellular matrix (ECM) proteins, which exhibit great potential for tissue regeneration. In this study, we developed a bioengineered three-dimensional bladder patch comprising porous scaffolds and multilayered ASC sheets, and evaluated its feasibility for bladder regeneration in a rat model. Tissue-engineered bladder patches restored bladder function and promoted regeneration of urothelium, smooth muscle, neural cells and blood vessels. Moreover, ultrasmall super-paramagnetic iron oxide (USPIO)-labeled bladder patches can be dynamically monitored in vivo by noninvasive MRI for long periods of time. Therefore, The USPIO-labeled bladder patch provides a promising image-guided therapeutic strategy for bladder regeneration.
Collapse
|
18
|
Sadahide K, Teishima J, Inoue S, Tamura T, Kamei N, Adachi N, Matsubara A. Endoscopic repair of the urinary bladder with magnetically labeled mesenchymal stem cells: Preliminary report. Regen Ther 2018; 10:46-53. [PMID: 30581896 PMCID: PMC6299148 DOI: 10.1016/j.reth.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction Transurethral resection of a bladder tumor (TURBT) using a resectoscope has been standard treatment for bladder cancer. However, no treatment method promotes the repair of resected bladder tissue. The aim of this study was to examine the healing process of damaged bladder tissue after a transurethral injection of bone marrow mesenchymal stem cells (MSCs) into the bladder. An injection of magnetic MSCs meant that they accumulated in the damaged area of the bladder. Another aim of this study was to compare the acceleration effect of MSC magnetic delivery on the repair of bladder tissue with that of non-magnetic MSC injection. Methods Using the transurethral approach to avoid opening the abdomen, electrofulguration was carried out on the anterior wall of the urinary bladder of white Japanese rabbits to mimic tumor resection. An external magnetic field directed at the injured site was then applied using a 1-tesla (T) permanent magnet. Twelve rabbits were divided into three groups. The 1 × 106 of magnetically labeled MSCs were injected into the urinary bladder with or without the magnetic field (MSC M+ and MSC M-groups, respectively), and phosphate-buffered saline was injected as the control. The effects of the injections in the three groups at 14 days were examined using 4.7-T magnetic resonance imaging (MRI) then macroscopically and histologically. The mRNA expressions of several cytokines in the repair tissues were assessed using real-time polymerase chain reaction. Results The macroscopic findings showed the area of repair tissue in the MSC M+ group to be larger than that in either the MSC M-group or control group. MRI clearly depicted the macroscopic findings. The histological study showed that repair of the cauterized area with myofibrous tissue was significantly better in the MSC M+ group than that in either the MSC M-group or control group, although there was no significant difference in several mRNA cytokines among the three groups at 14 days after surgery. Conclusions The magnetic delivery of MSCs shows promise as an effective, minimally invasive method of enhancing tissue regeneration after TURBT.
Collapse
Key Words
- BC, urinary bladder cancer
- Bone marrow
- Cancer
- FA, flip angle
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- MRI, Magnetic resonance imaging
- MSC, mesenchymal stem cell
- Mesenchymal stem cell
- NEX, number of excitations
- NMIBC, non-muscle invasive urinary bladder cancer
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- Regeneration
- SPION, superparamagnetic iron oxide nanoparticle
- TE, echo time
- TR, repetition time
- TURBT, transurethral resection of bladder tumor
- Transurethral resection
- Urinary bladder
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Kosuke Sadahide
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Corresponding author.
| | - Jun Teishima
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Tamura
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
Gasanz C, Raventós C, Temprana-Salvador J, Esteves M, Fonseca C, de Torres I, Morote J. Use of an acellular collagen-elastin matrix to support bladder regeneration in a porcine model of peritoneocystoplasty. Cent European J Urol 2018; 71:353-359. [PMID: 30386660 PMCID: PMC6202625 DOI: 10.5173/ceju.2018.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 11/28/2022] Open
Abstract
Introduction Bladder reconstruction without using the intestine remains a challenge to this day despite the development of new biomaterials and cell cultures. Human bladder engineering is merely anecdotic, and mostly in vitro and animal studies have been conducted. Material and methods In our study using a porcine model, we performed a bladder augmentation using an autologous parietal peritoneum graft (peritoneocystoplasty) and determined whether the attachment of an acellular collagen-elastin matrix (Group 1) or lack of (Group 2) had better histologic and functional results. Thus far, peritoneocystoplasty has rarely been performed or combined with a biomaterial. Results After 6 weeks, we observed different degrees of retraction of the new bladder wall in both groups, although the retraction was lower and the histological analysis showed more signs of regeneration (neoangiogenesis and less fibrosis) in Group 1 than when compared with Group 2. No transitional cells were found in the new bladder wall in any of the groups, and no differences were observed in the functional test results. Conclusions Performing a peritoneocystoplasty is an easy and safe procedure. The data supports the benefit of an acellular collagen–elastin matrix to reinforce bladder regeneration. However, in our study we observed too much retraction of the new wall and the histologic results were not acceptable to consider it an appropriate cystoplasty technique.
Collapse
Affiliation(s)
- Carlos Gasanz
- Department of Urology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Raventós
- Department of Urology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Temprana-Salvador
- Department of Pathology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marielle Esteves
- Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Fonseca
- Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inés de Torres
- Department of Pathology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Morote
- Department of Urology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Hustler A, Eardley I, Hinley J, Pearson J, Wezel F, Radvanyi F, Baker SC, Southgate J. Differential transcription factor expression by human epithelial cells of buccal and urothelial derivation. Exp Cell Res 2018; 369:284-294. [PMID: 29842880 PMCID: PMC6092173 DOI: 10.1016/j.yexcr.2018.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Identification of transcription factors expressed by differentiated cells is informative not only of tissue-specific pathways, but to help identify master regulators for cellular reprogramming. If applied, such an approach could generate healthy autologous tissue-specific cells for clinical use where cells from the homologous tissue are unavailable due to disease. Normal human epithelial cells of buccal and urothelial derivation maintained in identical culture conditions that lacked significant instructive or permissive signaling cues were found to display inherent similarities and differences of phenotype. Investigation of transcription factors implicated in driving urothelial-type differentiation revealed buccal epithelial cells to have minimal or absent expression of PPARG, GATA3 and FOXA1 genes. Retroviral overexpression of protein coding sequences for GATA3 or PPARy1 in buccal epithelial cells resulted in nuclear immunolocalisation of the respective proteins, with both transductions also inducing expression of the urothelial differentiation-associated claudin 3 tight junction protein. PPARG1 overexpression alone entrained expression of nuclear FOXA1 and GATA3 proteins, providing objective evidence of its upstream positioning in a transcription factor network and identifying it as a candidate factor for urothelial-type transdifferentiation or reprogramming.
Collapse
Affiliation(s)
- Arianna Hustler
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Ian Eardley
- Pyrah Department of Urology, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | - Jennifer Hinley
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Joanna Pearson
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Felix Wezel
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Francois Radvanyi
- Oncologie Moléculaire, Institut Curie, Centre de Recherche, 75248 Paris cedex 05, France
| | - Simon C Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
21
|
Bioengineering Approaches for Bladder Regeneration. Int J Mol Sci 2018; 19:ijms19061796. [PMID: 29914213 PMCID: PMC6032229 DOI: 10.3390/ijms19061796] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/25/2022] Open
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Collapse
|
22
|
Hunter P. Advanced therapies push regulatory boundaries: Novel therapeutic approaches require more regulatory flexibility and transparency. EMBO Rep 2017; 18:2101-2104. [PMID: 29122833 PMCID: PMC5709725 DOI: 10.15252/embr.201745345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Novel therapies, such as gene or cell therapy, don not require radical changes of the regulatory framework for medicinal products. Yet, both new and old developments cannot be easily accommodated by existing regulations.
Collapse
|
23
|
Urine-Derived Stem Cells: The Present and the Future. Stem Cells Int 2017; 2017:4378947. [PMID: 29250119 PMCID: PMC5698822 DOI: 10.1155/2017/4378947] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Stem cell research provides promising strategies in improving healthcare for human beings. As a noninvasively obtained and easy-to-culture cell resource with relatively low expense, urine-derived stem cells have special advantages. They have been extensively studied on its proliferation ability and differentiation potential and were being reprogrammed to model diseases during the last decade. In this review, we intend to summarize the latest progress on the research of urine-derived stem cells for its broad application mainly in regenerative medicine and disease modeling, as well as in what is challenging currently. This minireview will highlight the potential application of urine-derived stem cells and provides possible direction of further research in the future.
Collapse
|
24
|
Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2017; 6:35-44. [PMID: 29066225 DOI: 10.1016/j.sxmr.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In this review, we discuss major advancements and common challenges in constructing and regenerating a neo-urinary conduit (NUC). First, we focus on the need for regenerating the urothelium, the hallmark the urine barrier, unique to urinary tissues. Second, we focus on clinically feasible scaffolds based on decellularized matrices and molded collagen that are currently of great research interest. AIM To discuss the major advancements in constructing a tissue-engineered NUC (TE-NUC) and the challenges involved in their successful clinical translation. METHODS A comprehensive search of peer-reviewed literature from PubMed and Google Scholar on subjects related to urothelium regeneration, decellularized tissue matrices, and collagen scaffolds was conducted. MAIN OUTCOME MEASURE We evaluated the main biological and mechanical functions of urinary tissues, the need for TE implants to create a urinary diversion, the reasons for their failures in clinical settings, and the applications of decellularized tissue matrices and collagen-based molded scaffolds in their regeneration. RESULTS It is necessary to create a urine barrier that prevents urine leakage into the stroma that can cause failure of the graft. Despite the regeneration potential of the urothelium, the limited supply of healthy urothelial cells in patients with bladder cancer remains a major challenge. In this context, alternative strategies, such as transdifferentiation of cells into urothelium or engineered scaffolds based on decellularized tissues and molded collagen with robust urine barrier properties, are active areas of research. CONCLUSION There is an immediate need for developing a functional TE-NUC that can improve the quality of life of patients with bladder cancer. It is possible to achieve a TE-NUC by bioengineering an implant that has appropriate biological and mechanical properties to store and transport urine. We anticipate that future advancements in urothelium regeneration and material design will lead us closer to successful neo-urinary tissue constructs. Singh A, Bivalacqua TJ, Sopko N. Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2018;6:35-44.
Collapse
|