1
|
Piñeiro GJ, Lazo-Rodriguez M, Ventura-Aguiar P, Ramirez-Bajo MJ, Banon-Maneus E, Lozano M, Cid J, Hierro-Garcia N, Cucchiari D, Revuelta I, Montagud-Marrahi E, Palou E, Bayés-Genís B, Campistol JM, Diekmann F, Rovira J. Extracorporeal Photopheresis Improves Graft Survival in a Full-Mismatch Rat Model of Kidney Transplantation. Transpl Int 2023; 36:10840. [PMID: 36713113 PMCID: PMC9876976 DOI: 10.3389/ti.2023.10840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
Extracorporeal photopheresis (ECP) is an immunomodulatory therapy based on the infusion of autologous cellular products exposed to ultraviolet light (UV) in the presence of a photosensitizer. The study evaluates the ECP efficacy as induction therapy in a full-mismatch kidney transplant rat model. Dark Agouti to Lewis (DA-L) kidney transplant model has been established. ECP product was obtained from Lewis rat recipients after DA kidney graft transplantation (LewDA). Leukocytes of those LewDA rats were exposed to 8-methoxy psoralen, and illuminated with UV-A. The ECP doses assessed were 10 × 106 and 100 × 106 cells/time point. Lewis recipients received seven ECP infusions. DA-L model was characterized by the appearance of donor-specific antibodies (DSA) and kidney function deterioration from day three after kidney transplant. The dysfunction progressed rapidly until graft loss (6.1 ± 0.5 days). Tacrolimus at 0.25 mg/kg prolonged rat survival until 11.4 ± 0.7 days (p = 0.0004). In this context, the application of leukocytes from LewDA sensitized rats accelerated the rejection (8.7 ± 0.45, p = 0.0012), whereas ECP product at high dose extended kidney graft survival until 26.3 ± 7.3 days, reducing class I and II DSA in surviving rats. ECP treatment increases kidney graft survival in full-mismatch rat model of acute rejection and is a suitable immunomodulatory therapy to be explored in kidney transplantation.
Collapse
Affiliation(s)
- Gaston J. Piñeiro
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria J. Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisenda Banon-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Lozano
- Apheresis Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Joan Cid
- Apheresis Unit, Department of Hemotherapy and Hemostasis, IDIBAPS, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Natalia Hierro-Garcia
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Montagud-Marrahi
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Palou
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Beatriu Bayés-Genís
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep M. Campistol
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clinic de Barcelona, Barcelona, Spain,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Fritz Diekmann, ; Jordi Rovira,
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,*Correspondence: Fritz Diekmann, ; Jordi Rovira,
| |
Collapse
|
2
|
Maeda A, Yamamoto R, Mizuno S, Miki S, Sakamoto Y, Kogata S, Toyama C, Sato K, Okamatsu C, Ando T, Iida M, Watsuji T, Sato T, Miyagawa S, Okuyama H, Takami A, Kodera Y. Efficacy of a 365 nm Ultraviolet A1 light Emitting Diode (UVA1-LED) in in vitro Extracorporeal Photopheresis. Photochem Photobiol 2022; 98:1229-1235. [PMID: 35238039 DOI: 10.1111/php.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
Extracorporeal photochemotherapy (ECP) is one of the more effective cell therapies for graft-versus-host disease (GvHD). ECP is a widely recommended therapeutic approach for the treatment of chronic GvHD, particularly steroid-refractory GVHD. In recent years, the use of a light emitting diode (LED) in the clinic has attracted considerable interest. In this study, we examined the issue of whether an ultraviolet A1-light emitting diode (UVA1-LED) can be used as a light source in ECP. To compare the efficacy of ECP with conventional UVA lamp and a UVA1-LED, we established an in vitro ECP model. Treatment efficacy was evaluated by measuring the % apoptosis and the inhibition of T-cell proliferation. To investigate the effect of ECP on the innate immune reaction, THP-1 cells with a luciferase reporter gene driven by a NF-kB response element (THP-1 luc NF-kB) were treated with ECP. The LED-ECP induced apoptosis and inhibition of T-cell proliferation as efficiently as a conventional ECP. However, LED-ECP induced less innate immunity in THP-1. Since LED devices are more compact compared with conventional UVA irradiation devices, the use of a UVA1-LED in the treatment of ECP may be a better alternative to conventional ECP therapy.
Collapse
Affiliation(s)
- Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Air Water Incorporated, Osaka, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | | | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Sato
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takanori Ando
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Minako Iida
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Toshinobu Sato
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
3
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
4
|
Gonzalez RM, Pidala J. Evolving Therapeutic Options for Chronic Graft‐versus‐Host Disease. Pharmacotherapy 2020; 40:756-772. [DOI: 10.1002/phar.2427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rebecca M. Gonzalez
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI) Moffitt Cancer Center Tampa Florida USA
- Department of Pharmacy Moffitt Cancer Center Tampa Florida USA
| | - Joseph Pidala
- Department of Blood & Marrow Transplant and Cellular Immunotherapy (BMT CI) Moffitt Cancer Center Tampa Florida USA
| |
Collapse
|
5
|
Shapiro RM, Antin JH. Therapeutic options for steroid-refractory acute and chronic GVHD: an evolving landscape. Expert Rev Hematol 2020; 13:519-532. [PMID: 32249631 DOI: 10.1080/17474086.2020.1752175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The traditional therapeutic modalities to manage SR-acute GVHD have focused on the inhibition of the alloreactive T-cell response, while in the setting of SR-chronic GVHD the focus has been on a combination of T-cell and B-cell targeting strategies. However, new therapeutic modalities have shown promise. The purpose of this review is to summarize the current treatment landscape of SR-acute and chronic GVHD.Areas covered: A systematic search of MEDLINE, EMBASE, and clinicaltrials.gov databases for published articles, abstracts, and clinical trials pertaining to available therapeutic modalities for SR-acute and SR-chronic GVHD was conducted. Also highlighted is a number of ongoing clinical trials in both SR-acute and SR-chronic GVHD with strategies targeting the JAK-1/2 pathway, the Treg:Tcon ratio, the immunomodulation mediated by mesenchymal stem cells, and the gut microbiome, among others. Expert opinion: Ruxolitinib has emerged as the preferred therapeutic modality for SR-acute GVHD, with alpha-1-antitrypsin and extracorporeal photophoresis (ECP) being reasonable alternatives. Ruxolitinib and Ibrutinib are among the preferred options for SR-chronic GVHD, with ECP being a viable alternative particularly if the skin is involved. A number of novel therapeutic modalities, including those enhancing the activity of regulatory T-cells have shown great promise in early phase trials of SR-chronic GVHD.
Collapse
Affiliation(s)
- Roman M Shapiro
- Advanced Fellow in Stem Cell Transplantation, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph H Antin
- Blood and Marrow Transplantation Program, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Varjú C, Kumánovics G, Czirják L, Matucci-Cerinic M, Minier T. Sclerodermalike syndromes: Great imitators. Clin Dermatol 2019; 38:235-249. [PMID: 32513403 DOI: 10.1016/j.clindermatol.2019.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sclerodermalike syndromes (SLSs) comprise diseases with mucin deposition (eg, scleromyxedema, scleredema), with eosinophilia (eg, eosinophilic fasciitis), metabolic or biochemical abnormalities (eg, nephrogenic systemic fibrosis), or endocrine disorders (eg, POEMS syndrome, or polyneuropathy, organomegaly, endocrinopathy, monoclonal lymphoproliferative disorder, and hypothyroidism). Chronic graft-versus-host disease may also show sclerodermalike skin changes. Inherited progeria syndromes with early aging (eg, Werner syndrome) and a heterogeneous group of hereditary disorders with either skin thickening (eg, stiff skin syndrome) or atrophy and tightening (eg, acrogeria) can also imitate classic systemic sclerosis (SSc). In addition, SLSs can be provoked by several drugs, chemicals, or even physical injury (eg, trauma, vibration stress, radiation). In SLSs, the distribution of skin involvement seems to be atypical compared with SSc. The acral skin involvement is usually missing, and lack of Raynaud phenomenon, scleroderma-specific antinuclear antibodies, the absence of scleroderma capillary pattern, and internal organ manifestations indicate the presence of an SLS. Skin involvement is sometimes nodular, and the underlying tissues can also be affected. For the differential diagnosis, a skin biopsy of the deeper layers including fascia and muscle is required. Histology does not always allow differentiation between SSc and SLSs; therefore, the diagnosis is often based on the distribution, quality of cutaneous involvement, and other accompanying clinical features.
Collapse
Affiliation(s)
- Cecília Varjú
- Department of Rheumatology and Immunology, University of Pécs Clinical Center, Pecs, Hungary
| | - Gábor Kumánovics
- Department of Rheumatology and Immunology, University of Pécs Clinical Center, Pecs, Hungary
| | - László Czirják
- Department of Rheumatology and Immunology, University of Pécs Clinical Center, Pecs, Hungary
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Florence, Italy
| | - Tünde Minier
- Department of Rheumatology and Immunology, University of Pécs Clinical Center, Pecs, Hungary.
| |
Collapse
|
7
|
Ni M, Wang L, Yang M, Neuber B, Sellner L, Hückelhoven-Krauss A, Schubert ML, Luft T, Hegenbart U, Schönland S, Wuchter P, Chen BA, Eckstein V, Krüger W, Yerushalmi R, Beider K, Nagler A, Müller-Tidow C, Dreger P, Schmitt M, Schmitt A. Shaping of CD56 bri Natural Killer Cells in Patients With Steroid-Refractory/Resistant Acute Graft-vs.-Host Disease via Extracorporeal Photopheresis. Front Immunol 2019; 10:547. [PMID: 30949182 PMCID: PMC6436423 DOI: 10.3389/fimmu.2019.00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 11/24/2022] Open
Abstract
CD56bri natural killer (NK) cells play an important role in the pathogenesis of graft-vs. -host disease (GVHD) and immune defense in the early period after allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP) as an immunomodulating therapy has been widely used for GVHD treatment. However, the mechanism of action of ECP still remains to be elucidated, particularly the influence of ECP on NK cells. Thirty-four patients with steroid-refractory/resistant acute GVHD (aGVHD) ≥ °II and moderate to severe chronic GVHD (cGVHD) received ECP therapy. Patient samples obtained during intensive and long-term treatment were analyzed. Immunomonitoring with respect to cell phenotype and function was performed on rested peripheral blood mononuclear cells (PBMCs) using multiparametric flow cytometry. NK activity in terms of cytokine release was analyzed by intracellular cytokine staining after co-culture with K562 cells. Moreover, the proliferative capacity of NK cells, CD4+, and CD8+ T cells was determined by carboxyfluorescein succinimidyl ester (CFSE) staining. Clinically, 75% of aGVHD and 78% of cGVHD patients responded to ECP therapy. Moreover, our data show that aGVHD, cGVHD patients and healthy donors (HDs) present distinct NK patterns: aGVHD patients have a higher frequency of CD56bri NK subsets with stronger NKG2D and CD62L expression, while CD56−CD16+ NK cells with higher expression of CD57 and CD11b stand out as a signature population for cGVHD. ECP therapy could significantly decrease CD56briCD16− NK cells with shifting the quality from a cytotoxic to a regulatory pattern and additionally mature CD56dim NK cells via upregulation of CD57 in complete responding aGVHD patients. Moreover, ECP could keep the anti-viral and anti-leukemic effects intact via maintaining specialized anti-viral/leukemic CD57+NKG2C+CD56dim NK cells as well as remaining the quality and quantity of cytokine release by NK cells. The proliferative capacity of effector cells remained constant over ECP therapy. In conclusion, ECP represents an attractive option to treat GVHD without compromising anti-viral/leukemic effects. Shaping of CD56bri NK cell compartment by downregulating the cytotoxic subset while upregulating the regulatory subset contributes to the mechanisms of ECP therapy in aGVHD.
Collapse
Affiliation(s)
- Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Mingya Yang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | | | - Maria-Luisa Schubert
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bao-An Chen
- Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - William Krüger
- Department of Internal Medicine C, Hematology, Oncology, Stem Cell Transplantation, Palliative Care, University Clinic Greifswald, Greifswald, Germany
| | - Ronit Yerushalmi
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Wiese F, Reinhardt-Heller K, Volz M, Gille C, Köstlin N, Billing H, Handgretinger R, Holzer U. Monocytes show immunoregulatory capacity on CD4 + T cells in a human in-vitro model of extracorporeal photopheresis. Clin Exp Immunol 2018; 195:369-380. [PMID: 30411330 DOI: 10.1111/cei.13232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
Extracorporeal photopheresis (ECP) is a widely used immunomodulatory therapy for the treatment of various T cell-mediated disorders such as cutaneous T cell lymphoma (CTCL), graft-versus-host disease (GvHD) or systemic sclerosis. Although clinical benefits of ECP are already well described, the underlying mechanism of action of ECP is not yet fully understood. Knowledge on the fate of CD14+ monocytes in the context of ECP is particularly limited and controversial. Here, we investigated the immunoregulatory function of ECP treated monocytes on T cells in an in-vitro ECP model. We show that ECP-treated monocytes significantly induce proinflammatory T cell types in co-cultured T cells, while anti-inflammatory T cells remain unaffected. Furthermore, we found significantly reduced proliferation rates of T cells after co-culture with ECP-treated monocytes. Both changes in interleukin secretion and proliferation were dependent on cell-contact between monocytes and T cells. Interestingly, blocking interactions of programmed death ligand 1 (PD-L1) to programmed death 1 (PD-1) in the in-vitro model led to a significant recovery of T cell proliferation. These results set the base for further studies on the mechanism of ECP, especially the regulatory role of ECP-treated monocytes.
Collapse
Affiliation(s)
- F Wiese
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - K Reinhardt-Heller
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - M Volz
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - C Gille
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - N Köstlin
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - H Billing
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - R Handgretinger
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - U Holzer
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| |
Collapse
|