1
|
Rajkumar M, Davis Presley SI, Thiyagarajulu N, Girigoswami K, Janani G, Kamaraj C, Madheswaran B, Prajapati B, Ali N, Khan MR. Gelatin/PLA-loaded gold nanocomposites synthesis using Syzygium cumini fruit extract and their antioxidant, antibacterial, anti-inflammatory, antidiabetic and anti-Alzheimer's activities. Sci Rep 2025; 15:2110. [PMID: 39814774 PMCID: PMC11735676 DOI: 10.1038/s41598-024-84098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis. The FTIR spectrum showed various functional groups and the XRD patterns confirmed the crystalline shape and structure of nanocomposites. The FESEM and HRTEM results showed a oval shape of Ge/PLA/AuNCs with an average particle size of 21 nm. The Ge/PLA/AuNC's remarkable antioxidant activity, as evidenced by DPPH (70.84 ± 1.64%), ABTS activity (86.17 ± 1.96%), and reducing power activity (78.42 ± 1.48%) at a concentration of 100 μg/mL was observed. The zone of inhibition against Staphylococcus aureus (19.45 ± 0.89 mm) and Echericia coli (20.83 ± 0.97 mm) revealed the excellent antibacterial activity of Ge/PLA/AuNCs. The anti-diabetic activity of Ge/PLA/AuNCs was supported by inhibition of α-amylase (82.56 ± 1.49%) and α-glucosidase (80.27 ± 1.57%). The anti-Alzheimer activity was confirmed by inhibition of the AChE (76.37 ± 1.18%) and BChE (85.94 ± 1.38%) enzymes. In vivo studies of zebrafish embryos showed that Ge/PLA/AuNCs have excellent biocompatibility and nontoxicity. The SH-SY5Y cell line study demonstrated improved cell viability (95.27 ± 1.62%) and enhanced neuronal cell growth following Ge/PLA/AuNCs treatment. In conclusion, the present study highlights the cost-effective and non-toxic properties of Ge/PLA/AuNCs. Furthermore, it presents an attractive and promising approach for various future biomedical applications.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India
| | - S I Davis Presley
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamil Nadu, 603 110, India.
| | - Nathiya Thiyagarajulu
- Department of Life Sciences, Kristu Jayanti College, Bengaluru, Karnataka, 560 077, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, 603 110, India.
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602101, India.
| | - Gopalarethinam Janani
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, 603 110, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Bharathi Madheswaran
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Ariyanur, Salem, Tamil Nadu, 636 308, India
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, 384012, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Alidoust FA, Zahmatkesh H, Rasti B, Zamani H, Mirpour M, Mirzaie A. Zinc oxide fabricated by rutin as potent anti-leukemia nanostructure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03724-1. [PMID: 39704806 DOI: 10.1007/s00210-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Treatment of chronic myeloid leukemia (CML) is a significant therapeutic challenge, and exploration of novel treatment approaches is an urgent necessity. This work investigates the anticancer properties of rutin-conjugated zinc oxide nanoparticles (Rut-ZnO NPs) against CML cells. Physicochemical properties of the NPs were studied by FT-IR, FE-SEM, XRD, zeta potential, and DLS analyses. The MTT, flow cytometry, and quantitative PCR assays were utilized to evaluate cell viability, apoptosis, and Bax/Bcl-2 ratio, respectively. The ZnO-Rut NPs were amorphous with an average size of 59.50 nm, and hydrodynamic size and zeta potential were 161.7nm and -34.3 mV, respectively. The ZnO-Rut NPs showed good cytocompatibility as the viability of peripheral blood mononuclear cells remained above 85% at concentrations up to 100 μg/mL. ZnO-Rut NPs reduced the viability of K562 cells from 92 to 31% at exposure concentrations from 3.125 to 400 μg/mL. The IC50 values for rutin, ZnO NPs, and ZnO-Rutin NPs against K562 cells were 501.8, 386.3, and 175.9 μg/mL, respectively. Following the exposure to ZnO-Rutin NPs, the percentage of early apoptosis increased slightly from 10.5% to 14.1%, and a significant increase (from 11% to 50.9%) in late apoptosis was observed. The mRNA level of the Bax elevated to 1.98 folds, and the Bcl-2 gene was downregulated to 0.33 folds, underscoring the mechanism by which ZnO-Rutin NPs promote apoptosis. This study highlights the efficient anticancer potential of ZnO-Rutin NPs against CML cells, providing the basis for further investigations into their clinical applicability and underlying mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Azizi Alidoust
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Hossein Zahmatkesh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | | | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
3
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
5
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
6
|
Green synthesis of Gold and Silver Nanoparticles: Updates on Research, Patents, and Future Prospects. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Namasivayam SKR, Venkatachalam G, Bharani RSA, Kumar JA, Sivasubramanian S. Molecular intervention of colon cancer and inflammation manifestation by tannin capped biocompatible controlled sized gold nanoparticles from Terminalia bellirica: A green strategy for pharmacological drug formulation based on nanotechnology principles. 3 Biotech 2021; 11:401. [PMID: 34422541 PMCID: PMC8349386 DOI: 10.1007/s13205-021-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Among the diverse nanomaterials, gold nanoparticles (AuNps) are utilised for various therapeutic application due to the distinct physical, chemical properties and biocompatibility. Synthesis of gold nanoparticles using plants is the promising route. This method is low cost, eco-friendly and higher biological activities. In this present study, Gold nanoparticles were synthesised from fruit extract of Terminalia bellirica fruit extract. Their anticancer and anti-inflammatory activity was evaluated against colorectal cancer cell line (HT29) and TNBS-induced zebrafish model. Highly stable tannin capped gold nanoparticles were synthesised from fruit extract broth of Terminalia bellirica rapidly. Structural and functional properties of the synthesised nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) equipped with energy-dispersive atomic X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). All the characterisation studies reveal highly stable, crystalline, phytochemicals, mainly tannin doped, spherical, 28 nm controlled sized gold nanoparticles. The molecular mechanism of anticancer activity was studied by determining cancer markers' expression, which was studied using quantitative real-time polymerase chain reaction (qPCR). Antioxidative enzymes' status and apoptosis changes were also investigated. Synthesised nanoparticles brought a drastic reduction of all the tested cancer markers' expression. Notable changes in antioxidative enzymes' status and a good sign of apoptosis were observed in nanoparticles' treatment. The anti-inflammatory activity was studied against TNBS-induced zebrafish model, which was confirmed by determining inflammatory markers' expression TNF-α, iNOS (induced Nitric Oxide Synthase) and histopathological examination. Nanoparticles' treatment recorded a drastic reduction of inflammatory markers' expression. No marked sign of inflammation was also observed in histopathological analysis of the nanoparticles' treatment group. The present study suggests the possible utilisation of T. bellirica-mediated gold nanoparticles as an effective therapeutic agent against a prolonged inflammatory disease that progressively develops into cancer.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - Gayathri Venkatachalam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - R S Arvind Bharani
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - S Sivasubramanian
- Department of Chemical Engineering, Higher College of Technology, Muscat, Oman
| |
Collapse
|
8
|
Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, Nadeem M, Hano C, Lorenzo JM, Abbasi BH. A Systematic Review of Biosynthesized Metallic Nanoparticles as a Promising Anti-Cancer-Strategy. Cancers (Basel) 2021; 13:cancers13112818. [PMID: 34198769 PMCID: PMC8201057 DOI: 10.3390/cancers13112818] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the foremost causes of death worldwide. Cancer develops because of mutation in genes that regulate normal cell cycle and cell division, thereby resulting in uncontrolled division and proliferation of cells. Various drugs have been used to treat cancer thus far; however, conventional chemotherapeutic drugs have lower bioavailability, rapid renal clearance, unequal delivery, and severe side effects. In the recent years, nanotechnology has flourished rapidly and has a multitude of applications in the biomedical field. Bio-mediated nanoparticles (NPs) are cost effective, safe, and biocompatible and have got substantial attention from researchers around the globe. Due to their safe profile and fewer side effects, these nanoscale materials offer a promising cure for cancer. Currently, various metallic NPs have been designed to cure or diagnose cancer; among these, silver (Ag), gold (Au), zinc (Zn) and copper (Cu) are the leading anti-cancer NPs. The anticancer potential of these NPs is attributed to the production of reactive oxygen species (ROS) in cellular compartments that eventually leads to activation of autophagic, apoptotic and necrotic death pathways. In this review, we summarized the recent advancements in the biosynthesis of Ag, Au, Zn and Cu NPs with emphasis on their mechanism of action. Moreover, nanotoxicity, as well as the future prospects and opportunities of nano-therapeutics, are also highlighted.
Collapse
Affiliation(s)
- Anisa Andleeb
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
| | - Aneeta Andleeb
- Proteomics Lab, School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54590, Pakistan;
| | - Salman Asghar
- Media and Production Group, Centre for Media and Communication Studies, University of Gujrat, Gujrat 50700, Pakistan;
| | - Gouhar Zaman
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
| | - Muhammad Tariq
- Nanobiotechnology Group, Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan;
| | - Azra Mehmood
- Stem Cell & Regenerative Medicine Lab, National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan;
| | - Muhammad Nadeem
- Department of Biotechnology, Institute of Integrative Biosciences, Peshawar 25100, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, CEDEX 2, 45067 Orléans, France;
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia no 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
- Correspondence: ; Tel./Fax: +92-51-9064-4121
| |
Collapse
|
9
|
Li J, Cha R, Zhao X, Guo H, Luo H, Wang M, Zhou F, Jiang X. Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS NANO 2019; 13:5002-5014. [PMID: 30916928 DOI: 10.1021/acsnano.9b01002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antibiotics that are most used to cure bacterial infections in the clinic result in the imbalance of intestinal microflora, destroy the intestinal barrier, and induce bacterial resistance. There is an urgent need for antibacterial agent therapy for bacterial infections that does not destroy intestinal microflora. Herein, we applied 4,6-diamino-2-pyrimidinethiol (DAPT)-coated Au nanoparticles (D-Au NPs) for therapy of bacterial infection induced by Escherichia coli ( E. coli) in the gut. We cultured D-Au NPs and E. coli in an anaerobic atmosphere to evaluate their bactericidal effect. We studied the microflora, distribution of Au, and biomarkers in mice after a 28-day oral administration to analyze the effect of Au NPs on mice. D-Au NPs cured bacterial infections more effectively than levofloxacin without harming intestinal microflora. D-Au NPs showed great potential as alternatives to oral antibiotics.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Xiaohui Zhao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Hongbo Guo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Huize Luo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Mingzheng Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences (Beijing) , No. 29 Xueyuan Road , Beijing 100083 , People's Republic of China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing 100190 , People's Republic of China
- Department of Biomedical Engineering , Southern University of Science and Technology , No. 1088 Xueyuan Road , Nanshan District, Shenzhen , Guangdong 518055 , People's Republic of China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , People's Republic of China
| |
Collapse
|