1
|
Karpov G, Lin MH, Headley DB, Baker TE. Oscillatory correlates of threat imminence during virtual navigation. Psychophysiology 2024; 61:e14551. [PMID: 38516942 DOI: 10.1111/psyp.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 03/23/2024]
Abstract
The Predatory Imminence Continuum Theory proposes that defensive behaviors depend on the proximity of a threat. While the neural mechanisms underlying this proposal are well studied in animal models, it remains poorly understood in humans. To address this issue, we recorded EEG from 24 (15 female) young adults engaged in a first-person virtual reality Risk-Reward interaction task. On each trial, participants were placed in a virtual room and presented with either a threat or reward conditioned stimulus (CS) in the same room location (proximal) or different room location (distal). Behaviorally, all participants learned to avoid the threat-CS, with most using the optimal behavior to actively avoid the proximal threat-CS (88% accuracy) and passively avoid the distal threat-CS (69% accuracy). Similarly, participants learned to actively approach the distal reward-CS (82% accuracy) and to remain passive to the proximal reward-CS (72% accuracy). At an electrophysiological level, we observed a general increase in theta power (4-8 Hz) over the right posterior channel P8 across all conditions, with the proximal threat-CS evoking the largest theta response. By contrast, distal cues induced two bursts of gamma (30-60 Hz) power over midline-parietal channel Pz (200 msec post-cue) and right frontal channel Fp2 (300 msec post-cue). Interestingly, the first burst of gamma power was sensitive to the distal threat-CS and the second burst at channel Fp2 was sensitive to the distal reward-CS. Together, these findings demonstrate that oscillatory processes differentiate between the spatial proximity information during threat and reward encoding, likely optimizing the selection of the appropriate behavioral response.
Collapse
Affiliation(s)
- Galit Karpov
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Mei-Heng Lin
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Travis E Baker
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| |
Collapse
|
2
|
Boehme S, Herrmann MJ, Mühlberger A. Good moments to stimulate the brain - A randomized controlled double-blinded study on anodal transcranial direct current stimulation of the ventromedial prefrontal cortex on two different time points in a two-day fear conditioning paradigm. Behav Brain Res 2024; 460:114804. [PMID: 38103872 DOI: 10.1016/j.bbr.2023.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
It is assumed that extinction learning is a suitable model for understanding the mechanisms underlying exposure therapy. Furthermore, there is evidence that non-invasive brain stimulation (NIBS) can elevate extinction learning by enhancing frontal brain activity and therefore NIBS can augment symptom reduction during exposure therapy in phobias. But, the underlying processes are still not well established. Open questions arise from NIBS time points and electrode placement, among others. Therefore, we investigated in a 2-day fear conditioning experiment, whether anodal transcranial direct current stimulation (tDCS) of the ventromedial prefrontal cortex (vmPFC) modulates either fear memory consolidation or dampened fear reaction during fear extinction. Sixty-six healthy participants were randomly assigned either to a group that received tDCS after fear acquisition (and before fear memory consolidation), to a group that received tDCS directly before fear extinction, or to a control group that never received active stimulation (sham). Differential skin conductance response (SCR) to CS+ vs. CS- was significantly decreased in both tDCS-groups compared to sham group. Our region of interest, the vmPFC, was stimulated best focally with a lateral anode position and a cathode on the contralateral side. But this comes along with a slightly lateral stimulation of vmPFC depending on whether anode is placed left or right. To avoid unintended effects of stimulated sides the two electrode montages (anode left or right) were mirror-inverted which led to differential effects in SCR and electrocortical (mainly late positive potential [LPP]) data in our exploratory analyses. Results indicated that tDCS-timing is relevant for fear reactions via disturbed fear memory consolidation as well as fear expression, and this depends on whether vmPFC is stimulated with either left- or right-sided anode electrode montage. Electrocortical data can shed more light on the underlying neural correlates and exaggerated LPP seems to be associated with disturbed fear memory consolidation and dampened SCR to CS+ vs. CS-, but solely in the right anode electrode montage. Further open questions addressing where and when to stimulate the prefrontal brain in the course of augmenting fear extinction are raised.
Collapse
Affiliation(s)
- Stephanie Boehme
- Department of Psychology, Chair for Clinical Psychology and Psychotherapy, Technische Universität Chemnitz, Wilhelm-Raabe-Straße 43, D-09120 Chemnitz, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Martin J Herrmann
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, D-97080 Wuerzburg, Germany
| | - Andreas Mühlberger
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
3
|
Plas SL, Tuna T, Bayer H, Juliano VAL, Sweck SO, Arellano Perez AD, Hassell JE, Maren S. Neural circuits for the adaptive regulation of fear and extinction memory. Front Behav Neurosci 2024; 18:1352797. [PMID: 38370858 PMCID: PMC10869525 DOI: 10.3389/fnbeh.2024.1352797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Vitor A. L. Juliano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samantha O. Sweck
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Angel D. Arellano Perez
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James E. Hassell
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Oberg C, Sharma H. Post-Traumatic Stress Disorder in Unaccompanied Refugee Minors: Prevalence, Contributing and Protective Factors, and Effective Interventions: A Scoping Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:941. [PMID: 37371174 PMCID: PMC10296917 DOI: 10.3390/children10060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
In 2021, there were close to 37 million children displaced worldwide. There were 13.7 million refugees and an additional 22.8 million internally displaced. In Europe, this included 23,255 unaccompanied minors seeking asylum, up 72% compared with 2020 (13,550). The objective was to review the current literature regarding PTSD in unaccompanied refugee minors (URM). The authors searched Ovid Medline, Embase, and Cochrane Library from 1 January 2008 through 15 January 2019. Thirty full texts were chosen that specifically studied unaccompanied refugee minors (URM). The results showed that URM had a prevalence of post-traumatic stress disorder (PTSD of 17-85% across the studies reviewed. There were numerous factors that contributed to PTSD, including cumulative stress and trauma, guilt, shame, and uncertainty about legal status. Protective factors included resilience, a trusted mentor, belonging to a social network, religion, having an adult mentor, and having a family (even if far away). Immigrant youth can thrive most easily in multiculturally affirming countries. Five interventions demonstrated effectiveness, comprising trauma-focused cognitive behavioral therapy (TF-CBT); "Mein Weg", a TF-CBT combined with a group-processing mixed therapy approach; teaching recovery techniques (TRT), narrative exposure therapy for children (KIDNET), and expressive arts intervention (EXIT). The significant mental health conditions include depression, anxiety, internalizing and externalizing behaviors, and frequently PTSD. It is fair to conclude that the high levels of mental health problems experienced in URM are due to exposure to traumatic experiences, separation from parents, and lack of social support.
Collapse
Affiliation(s)
- Charles Oberg
- Global Pediatrics Program, Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hayley Sharma
- Department of Internal Medicine and Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Pirazzini G, Starita F, Ricci G, Garofalo S, di Pellegrino G, Magosso E, Ursino M. Changes in brain rhythms and connectivity tracking fear acquisition and reversal. Brain Struct Funct 2023:10.1007/s00429-023-02646-7. [PMID: 37129622 DOI: 10.1007/s00429-023-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fear conditioning is used to investigate the neural bases of threat and anxiety, and to understand their flexible modifications when the environment changes. This study aims to examine the temporal evolution of brain rhythms using electroencephalographic signals recorded in healthy volunteers during a protocol of Pavlovian fear conditioning and reversal. Power changes and Granger connectivity in theta, alpha, and gamma bands are investigated from neuroelectrical activity reconstructed on the cortex. Results show a significant increase in theta power in the left (contralateral to electrical shock) portion of the midcingulate cortex during fear acquisition, and a significant decrease in alpha power in a broad network over the left posterior-frontal and parietal cortex. These changes occur since the initial trials for theta power, but require more trials (3/4) to develop for alpha, and are also present during reversal, despite being less pronounced. In both bands, relevant changes in connectivity are mainly evident in the last block of reversal, just when power differences attenuate. No significant changes in the gamma band were detected. We conclude that the increased theta rhythm in the cingulate cortex subserves fear acquisition and is transmitted to other cortical regions via increased functional connectivity allowing a fast theta synchronization, whereas the decrease in alpha power can represent a partial activation of motor and somatosensory areas contralateral to the shock side in the presence of a dangerous stimulus. In addition, connectivity changes at the end of reversal may reflect long-term alterations in synapses necessary to reverse the previously acquired contingencies.
Collapse
Affiliation(s)
- Gabriele Pirazzini
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Area di Campus Cesena, Via Dell'Università 50, 47521, Cesena, Italy.
| | - Francesca Starita
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", University of Bologna, 40126, Bologna, Italy
| | - Giulia Ricci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Area di Campus Cesena, Via Dell'Università 50, 47521, Cesena, Italy
| | - Sara Garofalo
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", University of Bologna, 40126, Bologna, Italy
| | - Giuseppe di Pellegrino
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", University of Bologna, 40126, Bologna, Italy
| | - Elisa Magosso
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Area di Campus Cesena, Via Dell'Università 50, 47521, Cesena, Italy
| | - Mauro Ursino
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Area di Campus Cesena, Via Dell'Università 50, 47521, Cesena, Italy
| |
Collapse
|
6
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
7
|
Neuroinflammation in Post-Traumatic Stress Disorder. Biomedicines 2022; 10:biomedicines10050953. [PMID: 35625690 PMCID: PMC9138406 DOI: 10.3390/biomedicines10050953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/07/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a well-known mental illness, which is caused by various stressors, including memories of past physical assaults and psychological pressure. It is diagnosed as a mental and behavioral disorder, but increasing evidence is linking it to the immune system and inflammatory response. Studies on the relationship between inflammation and PTSD revealed that patients with PTSD had increased levels of inflammatory cytokine biomarkers, such as interleukin-1, interleukin-6, tumor necrosis factor-α, nuclear factor-κB, and C-reactive protein, compared with healthy controls. In addition, animal model experiments imitating PTSD patients suggested the role of inflammation in the pathogenesis and pathophysiology of PTSD. In this review, we summarize the definition of PTSD and its association with increased inflammation, its mechanisms, and future predictable diseases and treatment possibilities. We also discuss anti-inflammatory treatments to address inflammation in PTSD.
Collapse
|
8
|
De Pascalis V, Vecchio A. The influence of EEG oscillations, heart rate variability changes, and personality on self-pain and empathy for pain under placebo analgesia. Sci Rep 2022; 12:6041. [PMID: 35410362 PMCID: PMC9001726 DOI: 10.1038/s41598-022-10071-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/01/2022] [Indexed: 12/30/2022] Open
Abstract
We induced placebo analgesia (PA), a phenomenon explicitly attenuating the self-pain feeling, to assess whether this resulted in reduced empathy pain when witnessing a confederate undergoing such pain experience. We recorded EEG and electrocardiogram during a painful Control and PA treatment in healthy adults who rated their experienced pain and empathy for pain. We derived HRV changes and, using wavelet analysis of non-phase-locked event-related EEG oscillations, EEG spectral power differences for self-pain and other-pain conditions. First-hand PA reduced self-pain and self-unpleasantness, whereas we observed only a slight decrease in other unpleasantness. We derived linear combinations of HRV and EEG band power changes significantly associated with self-pain and empathy for pain changes using PCAs. Lower Behavioral Inhibition System scores predicted self-pain reduction through the mediating effect of a relative HR-slowing and a decreased midline ϑ-band (4-8 Hz) power factor moderated by lower Fight-Flight-Freeze System trait scores. In the other-pain condition, we detected a direct positive influence of Total Empathic Ability on the other-pain decline with a mediating role of the midline β2-band (22-30 Hz) power reduction. These findings suggest that PA modulation of first-hand versus other pain relies on functionally different physiological processes involving different personality traits.
Collapse
Affiliation(s)
- Vilfredo De Pascalis
- Department of Psychology, Sapienza Foundation, Sapienza University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
| | - Arianna Vecchio
- Department of Psychology, Sapienza Foundation, Sapienza University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
| |
Collapse
|
9
|
Merino E, Raya-Salom D, Teruel-Martí V, Adell A, Cervera-Ferri A, Martínez-Ricós J. Effects of Acute Stress on the Oscillatory Activity of the Hippocampus-Amygdala-Prefrontal Cortex Network. Neuroscience 2021; 476:72-89. [PMID: 34543675 DOI: 10.1016/j.neuroscience.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Displaying a stress response to threatening stimuli is essential for survival. These reactions must be adjusted to be adaptive. Otherwise, even mental illnesses may develop. Describing the physiological stress response may contribute to distinguishing the abnormal responses that accompany the pathology, which may help to improve the development of both diagnoses and treatments. Recent advances have elucidated many of the processes and structures involved in stress response management; however, there is still much to unravel regarding this phenomenon. The main aim of the present research is to characterize the response of three brain areas deeply involved in the stress response (i.e., to an acute stressful experience). Specifically, the electrophysiological activity of the infralimbic division of the medial prefrontal cortex (IL), the basolateral nucleus of the amygdala (BLA), and the dorsal hippocampus (dHPC) was recorded after the infusion of 0.5 µl of corticosterone-releasing factor into the dorsal raphe nucleus (DRN), a procedure which has been validated as a paradigm to cause acute stress. This procedure induced a delayed reduction in slow waves in the three structures, and an increase in faster oscillations, such as those in theta, beta, and gamma bands. The mutual information at low theta frequencies between the BLA and the IL increased, and the delta and slow wave mutual information decreased. The low theta-mid gamma phase-amplitude coupling increased within BLA, as well as between BLA and IL. This electrical pattern may facilitate the activation of these structures, in response to the stressor, and memory consolidation.
Collapse
Affiliation(s)
- Esteban Merino
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Danae Raya-Salom
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander 39011, Spain; Biomedical Research Networking Centre for Mental Health (CIBERSAM), Santander, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain.
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain.
| |
Collapse
|
10
|
Piwowarczyk P, Kaczmarska A, Kutnik P, Hap A, Chajec J, Myśliwiec U, Czuczwar M, Borys M. Association of Gender, Painkiller Use, and Experienced Pain with Pain-Related Fear and Anxiety among University Students According to the Fear of Pain Questionnaire-9. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084098. [PMID: 33924523 PMCID: PMC8068817 DOI: 10.3390/ijerph18084098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022]
Abstract
Anxiety and fear are determinants of acute and chronic pain. Effectively measuring fear associated with pain is critical for identifying individuals’ vulnerable to pain. This study aimed to assess fear of pain among students and evaluate factors associated with pain-related fear. We used the Fear of Pain Questionnaire-9 to measure this fear. We searched for factors associated with fear of pain: gender, size of the city where the subjects lived, subject of academic study, year of study, the greatest extent of experienced pain, frequency of painkiller use, presence of chronic or mental illness, and past hospitalization. We enrolled 717 participants. Median fear of minor pain was 5 (4–7) fear of medical pain 7 (5–9), fear of severe pain 10 (8–12), and overall fear of pain 22 (19–26). Fear of pain was associated with gender, frequency of painkiller use, and previously experienced pain intensity. We found a correlation between the greatest pain the participant can remember and fear of minor pain (r = 0.112), fear of medical pain (r = 0.116), and overall fear of pain (r = 0.133). Participants studying medicine had the lowest fear of minor pain while stomatology students had the lowest fear of medical pain. As students advanced in their studies, their fear of medical pain lowered. Addressing fear of pain according to sex of the patient, frequency of painkiller use, and greatest extent of experienced pain could ameliorate medical training and improve the quality of pain management in patients.
Collapse
Affiliation(s)
- Paweł Piwowarczyk
- II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (P.K.); (M.C.); (M.B.)
- Correspondence:
| | - Agnieszka Kaczmarska
- Student’s Scientific Association, II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.H.); (J.C.); (U.M.)
| | - Paweł Kutnik
- II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (P.K.); (M.C.); (M.B.)
| | - Aleksandra Hap
- Student’s Scientific Association, II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.H.); (J.C.); (U.M.)
| | - Joanna Chajec
- Student’s Scientific Association, II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.H.); (J.C.); (U.M.)
| | - Urszula Myśliwiec
- Student’s Scientific Association, II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (A.H.); (J.C.); (U.M.)
| | - Mirosław Czuczwar
- II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (P.K.); (M.C.); (M.B.)
| | - Michał Borys
- II Department of Anesthesiology and Intensive Care, Medical University of Lublin, 20-081 Lublin, Poland; (P.K.); (M.C.); (M.B.)
| |
Collapse
|
11
|
Detection of Electrophysiological Activity of Amygdala during Anesthesia Using Stereo-EEG: A Preliminary Research in Anesthetized Epileptic Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6932035. [PMID: 33102588 PMCID: PMC7568817 DOI: 10.1155/2020/6932035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022]
Abstract
Recent studies of anesthesia mechanisms have focused on neuronal network and functional connectivity. The stereo-electroencephalography (SEEG) recordings provide appropriate temporal and spatial resolution to study whole-brain dynamics; however, the feasibility to detect subcortical signals during anesthesia still needs to be studied with clinical evidence. Here, we focus on the amygdala to investigate if SEEG can be used to detect cortical and subcortical electrophysiological activity in anesthetized epileptic patients. Therefore, we present direct evidence in humans that SEEG indeed can be used to record cortical and subcortical electrophysiological activity during anesthesia. The study was carried out in propofol-anesthetized five epileptic patients. The electrophysiology activity of the amygdala and other cortical areas from anesthesia to the recovery of consciousness was investigated using stereo-EEG (SEEG). Results indicated that with the decrease of propofol concentration, power spectral density (PSD) in the delta band of the amygdala significantly decreased. When it was close to recovery, the correlation between the amygdala and ipsilateral temporal lobe significantly decreased followed by a considerable increase when awake. The findings of the current study suggest SEEG as an effective tool for providing direct evidence of the anesthesia mechanism.
Collapse
|
12
|
Carpenter JK, Pinaire M, Hofmann SG. From Extinction Learning to Anxiety Treatment: Mind the Gap. Brain Sci 2019; 9:brainsci9070164. [PMID: 31336700 PMCID: PMC6680899 DOI: 10.3390/brainsci9070164] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Laboratory models of extinction learning in animals and humans have the potential to illuminate methods for improving clinical treatment of fear-based clinical disorders. However, such translational research often neglects important differences between threat responses in animals and fear learning in humans, particularly as it relates to the treatment of clinical disorders. Specifically, the conscious experience of fear and anxiety, along with the capacity to deliberately engage top-down cognitive processes to modulate that experience, involves distinct brain circuitry and is measured and manipulated using different methods than typically used in laboratory research. This paper will identify how translational research that investigates methods of enhancing extinction learning can more effectively model such elements of human fear learning, and how doing so will enhance the relevance of this research to the treatment of fear-based psychological disorders.
Collapse
Affiliation(s)
- Joseph K Carpenter
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA
| | - Megan Pinaire
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Ave, 2nd floor, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Chirumamilla VC, Gonzalez-Escamilla G, Koirala N, Bonertz T, von Grotthus S, Muthuraman M, Groppa S. Cortical Excitability Dynamics During Fear Processing. Front Neurosci 2019; 13:568. [PMID: 31275095 PMCID: PMC6593288 DOI: 10.3389/fnins.2019.00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/17/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Little is known about the modulation of cortical excitability in the prefrontal cortex during fear processing in humans. Here, we aimed to transiently modulate and test the cortical excitability during fear processing using transcranial magnetic stimulation (TMS) and brain oscillations in theta and alpha frequency bands with electroencephalography (EEG). Methods: We conducted two separate experiments (no-TMS and TMS). In the no-TMS experiment, EEG recordings were performed during the instructed fear paradigm in which a visual cue (CS+) was paired with an aversive unconditioned stimulus (electric shock), while the other visual cue was unpaired (CS-). In the TMS experiment, in addition the TMS was applied on the right dorsomedial prefrontal cortex (dmPFC). The participants also underwent structural MRI (magnetic resonance imaging) scanning and were assigned pseudo-randomly to both experiments, such that age and gender were matched. The cortical excitability was evaluated by time-frequency analysis and functional connectivity with weighted phase lag index (WPLI). We further linked the excitability patterns with markers of stress coping capability. Results: After visual cue onset, we found increased theta power in the frontal lobe and decreased alpha power in the occipital lobe during CS+ relative to CS- trials. TMS of dmPFC increased theta power in the frontal lobe and reduced alpha power in the occipital lobe during CS+. The TMS pulse increased the information flow from the sensorimotor region to the prefrontal and occipital regions in the theta and alpha bands, respectively during CS+ compared to CS-. Pre-stimulation frontal theta power (0.75–1 s) predicted the magnitude of frontal theta power changes after stimulation (1–1.25 s). Finally, the increased frontal theta power during CS+ compared to CS- was positively correlated with stress coping behavior. Conclusion: Our results show that TMS over dmPFC transiently modulated the regional cortical excitability and the fronto-occipital information flows during fear processing, while the pre-stimulation frontal theta power determined the strength of achieved effects. The frontal theta power may serve as a biomarker for fear processing and stress-coping responses in individuals and could be clinically tested in mental disorders.
Collapse
Affiliation(s)
- Venkata C Chirumamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nabin Koirala
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tamara Bonertz
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sarah von Grotthus
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|