1
|
Bozich ER, Guo X, Wilson JL, Hoffmann A. A computational workflow for assessing drug effects on temporal signaling dynamics reveals robustness in stimulus-specific NFκB signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645599. [PMID: 40236106 PMCID: PMC11996442 DOI: 10.1101/2025.03.31.645599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-cell studies of signal transduction have revealed complex temporal dynamics that determine downstream biological function. For example, the stimulus-specific dynamics of the transcription factor NFκB specify stimulus-specific gene expression programs, and loss of specificity leads to disease. Thus, it is intriguing to consider drugs that may restore signaling specificity in disease contexts, or reduce activity but maintain signaling specificity to avoid unwanted side effects. However, while steady-state dose-response relationships have been the focus of pharmacological studies, there are no established methods for quantifying drug impact on stimulus-response signaling dynamics. Here we evaluated how drug treatments affect the stimulus-specificity of NFκB activation dynamics and its ability to accurately code ligand identity and dose. Specifically, we simulated the dynamic NFκB trajectories in response to 15 stimuli representing various immune threats under treatment of 10 representative drugs across 20 dosage levels. To quantify the effects on coding capacity, we introduced a Stimulus Response Specificity (SRS) score and a stimulus confusion score. We constructed stimulus confusion maps by employing epsilon network clustering in the trajectory space and in various dimensionally reduced spaces: canonical polyadic decomposition (CPD), functional principal component analysis (fPCA), and NFκB signaling codons (i.e. established, informative dynamic features). Our results indicated that the SRS score and the stimulus confusion map based on signaling codons are best-suited to quantify stimulus-specific NFκB dynamics confusion under pharmacological perturbations. Using these tools we found that temporal coding capacity of the NFκB signaling network is generally robust to a variety of pharmacological perturbations, thereby enabling the targeting of stimulus-specific dynamics without causing broad side-effects.
Collapse
|
2
|
Kochel B. Negative feedback systems for modelling NF-κB transcription factor oscillatory activity. Transcription 2024; 15:65-96. [PMID: 38739365 PMCID: PMC11810101 DOI: 10.1080/21541264.2024.2331887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/14/2024] Open
Abstract
Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3rd- and 4th-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, rela-/- embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.
Collapse
Affiliation(s)
- Bonawentura Kochel
- Immunotherapy Central Europe, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
3
|
Del Olmo M, Legewie S, Brunner M, Höfer T, Kramer A, Blüthgen N, Herzel H. Network switches and their role in circadian clocks. J Biol Chem 2024; 300:107220. [PMID: 38522517 PMCID: PMC11044057 DOI: 10.1016/j.jbc.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Circadian rhythms are generated by complex interactions among genes and proteins. Self-sustained ∼24 h oscillations require negative feedback loops and sufficiently strong nonlinearities that are the product of molecular and network switches. Here, we review common mechanisms to obtain switch-like behavior, including cooperativity, antagonistic enzymes, multisite phosphorylation, positive feedback, and sequestration. We discuss how network switches play a crucial role as essential components in cellular circadian clocks, serving as integral parts of transcription-translation feedback loops that form the basis of circadian rhythm generation. The design principles of network switches and circadian clocks are illustrated by representative mathematical models that include bistable systems and negative feedback loops combined with Hill functions. This work underscores the importance of negative feedback loops and network switches as essential design principles for biological oscillations, emphasizing how an understanding of theoretical concepts can provide insights into the mechanisms generating biological rhythms.
Collapse
Affiliation(s)
- Marta Del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Universität Heidelberg, Heidelberg, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Sun Y, Li H, Duan X, Ma X, Liu C, Shang D. Chensinin-1b Alleviates DSS-Induced Inflammatory Bowel Disease by Inducing Macrophage Switching from the M1 to the M2 Phenotype. Biomedicines 2024; 12:345. [PMID: 38397947 PMCID: PMC10886634 DOI: 10.3390/biomedicines12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with an increasing prevalence worldwide. Macrophage polarization is involved in the pathogenesis of IBD. Repolarization of macrophage has thus emerged as a novel therapeutic approach for managing IBD. Chensinin-1b, derived from the skin of Rana chensinensis, is a derivative of a native antimicrobial peptide (AMP). It shows anti-inflammatory effects in sepsis models and can potentially modulate macrophage polarization. The objective of this research was to study the role of chensinin-1b in macrophage polarization and dextran sulfate sodium (DSS)-induced colitis. RAW264.7 macrophages were polarized to the M1 phenotype using lipopolysaccharide (LPS) and simultaneously administered chensinin-1b at various concentrations. The ability of chenisnin-1b to reorient macrophage polarization was assessed by ELISA, qRT-PCR, and flow cytometry analysis. The addition of chensinin-1b significantly restrained the expression of M1-associated proinflammatory cytokines and surface markers, including TNF-α, IL-6, NO, and CD86, and exaggerated the expression of M2-associated anti-inflammatory cytokines and surface markers, including IL-10, TGF-β1, Arg-1, Fizz1, Chil3, and CD206. Mechanistically, via Western Blotting, we revealed that chensinin-1b induces macrophage polarization from the M1 to the M2 phenotype by inhibiting the phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). In mouse models of colitis, intraperitoneal administration of chensinin-1b alleviated symptoms induced by DSS, including weight loss, elevated disease activity index (DAI) scores, colon shortening, colonic tissue damage, and splenomegaly. Consistent with our in vitro data, chensinin-1b induced significant decreases in the expression of M1 phenotype biomarkers and increases in the expression of M2 phenotype biomarkers in the mouse colitis model. Furthermore, chensinin-1b treatment repressesed NF-κB phosphorylation in vivo. Overall, our data showed that chensinin-1b attenuates IBD by repolarizing macrophages from the M1 to the M2 phenotype, suggesting its potential as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Huiyu Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Xingpeng Duan
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Xiaoxiao Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Chenxi Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
5
|
Zhang N, Yang L, Wen J, Cui H. miR-200b-3p antagomir inhibits neuronal apoptosis in oxygen-glucose deprivation (OGD) model through regulating β-TrCP. Brain Res 2023; 1800:148192. [PMID: 36463959 DOI: 10.1016/j.brainres.2022.148192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Hypoxia-ischemic brain damage (HIBD) is a primary cause of morbidity and disability in survivors of preterm infants. We previously discovered that miR-200b-3p plays an important role in HIBD via targeting Slit2. This study was designed to identify novel targets of miR-200b-3p and investigate the relationship between miR-200b-3p and its downstream effectors. METHODS AND RESULTS Cultured primary rat hippocampal neurons were used in the model of oxygen-glucose deprivation (OGD) and RT-qPCR was utilized to detect the alterations of miR-200b-3p in these cells following the OGD. Our study found that the expression of miR-200b-3p was up-regulated in neurons post OGD. Bioinformatics analysis identified that β transducin repeat-containing protein (β-TrCP) is a target gene of miR-200b-3p, and our luciferase reporter gene assay confirmed that miR-200b-3p can interact with β-TrCP mRNA. Hypoxia-ischemic brain damage was induced in three-day-old SD rats and inhibition of miR-200b-3p by injection of antagomir into bilateral lateral ventricles enhanced β-TrCP expression at both the mRNA and protein levels in rats' brains. TUNEL staining and CCK-8 assays found that the survival of hippocampal neurons in the miR-200b-3p antagomir group was improved significantly (p<0.05), whereas apoptosis of neurons in the miR-200b-3p antagomir group was significantly decreased (p<0.05), as compared with the OGD group. However, silencing of β-TrCP by β-TrCP siRNA impaired the neuroprotective effect of miR-200b-3p antagomir. H&E staining showed that miR-200b-3p attenuated the pathological changes in the hippocampal region of rats with HIBD. CONCLUSION Our study has demonstrated that β-TrCP is a target gene of miR-200b-3p and that inhibition of miR-200b-3p by antagomir attenuates hypoxia-ischemic brain damage via β-TrCP.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jialin Wen
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Kariya Y, Honma M, Tokuda K, Konagaya A, Suzuki H. Utility of constraints reflecting system stability on analyses for biological models. PLoS Comput Biol 2022; 18:e1010441. [PMID: 36084151 PMCID: PMC9491612 DOI: 10.1371/journal.pcbi.1010441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/21/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Simulating complex biological models consisting of multiple ordinary differential equations can aid in the prediction of the pharmacological/biological responses; however, they are often hampered by the availability of reliable kinetic parameters. In the present study, we aimed to discover the properties of behaviors without determining an optimal combination of kinetic parameter values (parameter set). The key idea was to collect as many parameter sets as possible. Given that many systems are biologically stable and resilient (BSR), we focused on the dynamics around the steady state and formulated objective functions for BSR by partial linear approximation of the focused region. Using the objective functions and modified global cluster Newton method, we developed an algorithm for a thorough exploration of the allowable parameter space for biological systems (TEAPS). We first applied TEAPS to the NF-κB signaling model. This system shows a damped oscillation after stimulation and seems to fit the BSR constraint. By applying TEAPS, we found several directions in parameter space which stringently determines the BSR property. In such directions, the experimentally fitted parameter values were included in the range of the obtained parameter sets. The arachidonic acid metabolic pathway model was used as a model related to pharmacological responses. The pharmacological effects of nonsteroidal anti-inflammatory drugs were simulated using the parameter sets obtained by TEAPS. The structural properties of the system were partly extracted by analyzing the distribution of the obtained parameter sets. In addition, the simulations showed inter-drug differences in prostacyclin to thromboxane A2 ratio such that aspirin treatment tends to increase the ratio, while rofecoxib treatment tends to decrease it. These trends are comparable to the clinical observations. These results on real biological models suggest that the parameter sets satisfying the BSR condition can help in finding biologically plausible parameter sets and understanding the properties of biological systems. We propose a new method to analyze the properties of biological dynamic models, which we named TEAPS (Thorough Exploration of Allowable Parameter Space). TEAPS can thoroughly determine combinations of parameter values for ordinary differential equations with which an initial state in a certain range converges to a particular fixed point. This stable and resilient behavior is a characteristic shared with many biological systems, including metabolic systems and intracellular signaling systems. Therefore, this thorough search outlined the possible parameter space as biological systems for target models, which helps to understand the system constraints when the target systems behave dynamically. The obtained parameter space can be used as an initial space for parameter tuning. For models that include a large number of parameters, the parameter space to be searched in the parameter tuning process is too large; therefore, narrowing down the space by TEAPS potentially contributes to the analysis of the dynamics of complicated biological models. Thus, our approach can partly overcome the current problem in parameter tuning and can advance the computational dynamic analyses of biological systems.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Keita Tokuda
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akihiko Konagaya
- Molecular Robotics Research Institute, Limited, Kyowa Create Dai-ichi, Minato-ku, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Haga M, Okada M. Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 2022; 479:161-183. [PMID: 35098992 PMCID: PMC8883486 DOI: 10.1042/bcj20210547] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the most well-studied pathways related to inflammation, and its involvement in aging has attracted considerable attention. As aging is a complex phenomenon and is the result of a multi-step process, the involvement of the NF-κB pathway in aging remains unclear. To elucidate the role of NF-κB in the regulation of aging, different systems biology approaches have been employed. A multi-omics data-driven approach can be used to interpret and clarify unknown mechanisms but cannot generate mechanistic regulatory structures alone. In contrast, combining this approach with a mathematical modeling approach can identify the mechanistics of the phenomena of interest. The development of single-cell technologies has also helped clarify the heterogeneity of the NF-κB response and underlying mechanisms. Here, we review advances in the understanding of the regulation of aging by NF-κB by focusing on omics approaches, single-cell analysis, and mathematical modeling of the NF-κB network.
Collapse
Affiliation(s)
- Masatoshi Haga
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical Co., Ltd., Ikuno-ku, Osaka 544-8666, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
8
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
9
|
Mothes J, Ipenberg I, Arslan SÇ, Benary U, Scheidereit C, Wolf J. A Quantitative Modular Modeling Approach Reveals the Effects of Different A20 Feedback Implementations for the NF-kB Signaling Dynamics. Front Physiol 2020; 11:896. [PMID: 32848849 PMCID: PMC7402004 DOI: 10.3389/fphys.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Signaling pathways involve complex molecular interactions and are controled by non-linear regulatory mechanisms. If details of regulatory mechanisms are not fully elucidated, they can be implemented by different, equally reasonable mathematical representations in computational models. The study presented here focusses on NF-κB signaling, which is regulated by negative feedbacks via IκBα and A20. A20 inhibits NF-κB activation indirectly through interference with proteins that transduce the signal from the TNF receptor complex to activate the IκB kinase (IKK) complex. A number of pathway models has been developed implementing the A20 effect in different ways. We here focus on the question how different A20 feedback implementations impact the dynamics of NF-κB. To this end, we develop a modular modeling approach that allows combining previously published A20 modules with a common pathway core module. The resulting models are fitted to a published comprehensive experimental data set and therefore show quantitatively comparable NF-κB dynamics. Based on defined measures for the initial and long-term behavior we analyze the effects of a wide range of changes in the A20 feedback strength, the IκBα feedback strength and the TNFα stimulation strength on NF-κB dynamics. This shows similarities between the models but also model-specific differences. In particular, the A20 feedback strength and the TNFα stimulation strength affect initial and long-term NF-κB concentrations differently in the analyzed models. We validated our model predictions experimentally by varying TNFα concentrations applied to HeLa cells. These time course data indicate that only one of the A20 feedback models appropriately describes the impact of A20 on the NF-κB dynamics in this cell type.
Collapse
Affiliation(s)
- Janina Mothes
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Inbal Ipenberg
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Seda Çöl Arslan
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uwe Benary
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
10
|
Zhang H, Cao N, Yang Z, Fang X, Yang X, Li H, Hong Z, Ji Z. Bilobalide Alleviated Dextran Sulfate Sodium-Induced Experimental Colitis by Inhibiting M1 Macrophage Polarization Through the NF-κB Signaling Pathway. Front Pharmacol 2020; 11:718. [PMID: 32670051 PMCID: PMC7326085 DOI: 10.3389/fphar.2020.00718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bilobalide, a unique Ginkgo biloba constituent has attracted significant interest as a novel therapeutic option for neuronal protection. However, there is paucity of data on its effect on colitis. This work sought to evaluate the effect of bilobalide on macrophage polarization in vitro and dextran sulfate sodium (DSS) induced colitis in vivo. Through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and annexin V/PI assay, it was shown that bilobalide has no significant toxicity on macrophage. Lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) induced macrophage activation and polarization were significantly suppressed by bilobalide as indicated by reduced expression of cytokine, major histocompatibility complex II (MHC-II), and CD11c. Pertinently, the signaling pathway study showed that the phosphorylation of p65 and its nuclear translocation were decreased while STAT1 was not affected. In DSS-treated mice, administration (i.g) of three doses of bilobalide na\mely 1.25 mg/kg (low dose group), 2.5 mg/kg (medium dose group), and 5 mg/kg (high dose group) was performed daily starting from day 1 to day 10. Medium and high dose bilobalide markedly reduced the inflammation of colitis proved via elevation of bodyweight, decrement in disease activity index (DAI), alleviation of colon damage as well as reduction in activity of colon tissue myeloperoxidase activity. In accordance with the in vitro results, the levels of inflammatory cytokines such as interleukin 6 (IL-6), IL-1β, and tumor necrosis factor (TNF-α) in serum as well as messenger RNA (mRNA) expression in colon were obviously reduced in the bilobalide treated groups. Also, factor nuclear factor kappa B (NF-κB) signaling pathway was decreased significantly by bilobalide treatment. Collectively, these results indicated that administration of bilobalide improved experimental colitis via inhibition of M1 macrophage polarization through the NF-κB signaling pathway. Thus, bilobalide could act as a potential drug for the treatment of inflammatory bowel disease (IBD) in the not-too-distant future.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Nengqi Cao
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhilong Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xingchao Fang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xinyu Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Hao Li
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhi Hong
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhenling Ji
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|