1
|
Ding Y, Yang L, Wen J, Ma Y, Dai G, Mo F, Wang J. A Comprehensive Review of Advanced Lactate Biosensor Materials, Methods, and Applications in Modern Healthcare. SENSORS (BASEL, SWITZERLAND) 2025; 25:1045. [PMID: 40006275 PMCID: PMC11858931 DOI: 10.3390/s25041045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Lactate is a key metabolite in cellular respiration, and elevated levels usually indicate tissue hypoxia or metabolic dysregulation. The real-time detection of lactate levels is particularly important in situations such as exercise, shock, severe trauma, and tissue injury. Conventional lactate assays are insufficient to address today's complex and variable testing environments, and thus, there is an urgent need for highly sensitive biosensors. This review article provides an overview of the concept and composition of electrochemical lactate biosensors, as well as their recent advances. Comparisons of popular studies on enzymatic and non-enzymatic lactate sensors, the surface-related materials used for modifications to electrochemical lactate biosensors, and the detection methods commonly used for sensors are discussed separately. In addition, advances in implantable and non-implantable miniaturized lactate sensors are discussed, emphasizing their application for continuous real-time monitoring. Despite their potential, challenges such as non-specific binding, biomaterial interference, and biorecognition element stability issues remain during practical applications. Future research should aim to improve sensor design, biocompatibility, and integration with advanced signal processing techniques. With continued innovation, lactate sensors are expected to revolutionize personalized medicine, helping clinicians to increase treatment efficiency and improve the experience of their use.
Collapse
Affiliation(s)
- Yifeng Ding
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Liuhong Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jing Wen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yuhang Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Ge Dai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Key Laboratory of Biosafety Defense, Naval Medical University, Ministry of Education, 800 Xiangyin Road, Shanghai 200433, China
| | - Fengfeng Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Key Laboratory of Biosafety Defense, Naval Medical University, Ministry of Education, 800 Xiangyin Road, Shanghai 200433, China
| | - Jiafeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
de Moura ELB, Pereira RW. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. J Clin Med 2024; 13:7038. [PMID: 39685497 DOI: 10.3390/jcm13237038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
Sepsis is a pervasive condition that affects individuals of all ages, with significant social and economic consequences. The early diagnosis of sepsis is fundamental for establishing appropriate treatment and is based on warning scores and clinical characteristics, with positive microbiological cultures being the gold standard. Research has yet to identify a single biomarker to meet this diagnostic demand. Presepsin is a molecule that has the potential as a biomarker for diagnosing sepsis. In this paper, we present a narrative review of the diagnostic and prognostic performance of presepsin in different age groups. Given its particularities, it is identified that presepsin is a potential biomarker for sepsis at all stages of life.
Collapse
Affiliation(s)
- Edmilson Leal Bastos de Moura
- Health Sciences Doctoral Program, University of Brasília (UnB), Brasilia 70910-900, Distrito Federal, Brazil
- School of Health Sciences, Distrito Federal University (UnDF), Brasilia 70710-907, Distrito Federal, Brazil
| | - Rinaldo Wellerson Pereira
- Health Sciences Doctoral Program, University of Brasília (UnB), Brasilia 70910-900, Distrito Federal, Brazil
- Genomic Sciences and Biotechnology Graduate Program, Catholic University of Brasilia, Brasilia 71966-700, Distrito Federal, Brazil
| |
Collapse
|
3
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
4
|
Cotoia A, Parisano V, Mariotti PS, Lizzi V, Netti GS, Ranieri E, Forfori F, Cinnella G. Kinetics of Different Blood Biomarkers during Polymyxin-B Extracorporeal Hemoperfusion in Abdominal Sepsis. Blood Purif 2024; 53:574-582. [PMID: 38653211 DOI: 10.1159/000538870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Comparison of the marker kinetics procalcitonin, presepsin, and endotoxin during extracorporeal hemoperfusion with polymyxin-B adsorbing cartridge (PMX-HA) has never been described in abdominal sepsis. We aimed to compare the trend of three biomarkers in septic post-surgical abdominal patients in intensive care unit (ICU) treated with PMX-HA and their prognostic value. METHODS Ninety abdominal post-surgical patients were enrolled into different groups according to the evidence of postoperative sepsis or not. Non-septic patients admitted in the surgical ward were included in C group (control group). ICU septic shock patients with endotoxin levels <0.6 EAA receiving conventional therapy were addressed in S group and those with endotoxin levels ≥0.6 EAA receiving treatment with PMX-HA, besides conventional therapy, were included in SPB group. Presepsin, procalcitonin, endotoxin and other clinical data were recorded at 24 h (T0), 72 h (T1) and 7 days (T2) after surgery. Clinical follow-up was performed on day 30. RESULTS SPB group showed reduced levels of the three biomarkers on T2 versus T0 (p < 0.001); presepsin, procalcitonin and endotoxin levels decreased, respectively, by 25%, 11%, and 2% on T1 versus T0, and 40%, 41%, and 26% on T2 versus T0. All patients in C group, 73% of patients in SPB group versus 37% of patients in S group survived at follow-up. Moreover, procalcitonin had the highest predictive value for mortality at 30 days, followed by presepsin. CONCLUSION The present study showed the reliability of presepsin in monitoring PMX-HA treatment in septic shock patients. Procalcitonin showed better predicting power for the mortality riSsk.
Collapse
Affiliation(s)
- Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - Valeria Parisano
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | | | - Vincenzo Lizzi
- General Surgery Unit, Department of Medical and Surgical Sciences, University Hospital of Foggia, Foggia, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, University Hospital of Foggia, Foggia, Italy
| | - Elena Ranieri
- Clinical Pathology Unit and Center for Molecular Medicine, Department of Medical and Surgical Sciences, University Hospital of Foggia, Foggia, Italy
| | - Francesco Forfori
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Gilda Cinnella
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| |
Collapse
|
5
|
Ramasco F, Nieves-Alonso J, García-Villabona E, Vallejo C, Kattan E, Méndez R. Challenges in Septic Shock: From New Hemodynamics to Blood Purification Therapies. J Pers Med 2024; 14:176. [PMID: 38392609 PMCID: PMC10890552 DOI: 10.3390/jpm14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Sepsis and septic shock are associated with high mortality, with diagnosis and treatment remaining a challenge for clinicians. Their management classically encompasses hemodynamic resuscitation, antibiotic treatment, life support, and focus control; however, there are aspects that have changed. This narrative review highlights current and avant-garde methods of handling patients experiencing septic shock based on the experience of its authors and the best available evidence in a context of uncertainty. Following the first recommendation of the Surviving Sepsis Campaign guidelines, it is recommended that specific sepsis care performance improvement programs are implemented in hospitals, i.e., "Sepsis Code" programs, designed ad hoc, to achieve this goal. Regarding hemodynamics, the importance of perfusion and hemodynamic coherence stand out, which allow for the recognition of different phenotypes, determination of the ideal time for commencing vasopressor treatment, and the appropriate fluid therapy dosage. At present, this is not only important for the initial timing, but also for de-resuscitation, which involves the early weaning of support therapies, directed elimination of fluids, and fluid tolerance concept. Finally, regarding blood purification therapies, those aimed at eliminating endotoxins and cytokines are attractive in the early management of patients in septic shock.
Collapse
Affiliation(s)
- Fernando Ramasco
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Jesús Nieves-Alonso
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Esther García-Villabona
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Carmen Vallejo
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Eduardo Kattan
- Departamento de Medicina Intensiva del Adulto, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago 8320000, Chile
| | - Rosa Méndez
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
6
|
Kumareswaran A, Ekeuku SO, Mohamed N, Muhammad N, Hanafiah A, Pang KL, Wong SK, Chew DCH, Chin KY. The Effects of Tocotrienol on Gut Microbiota: A Scoping Review. Life (Basel) 2023; 13:1882. [PMID: 37763286 PMCID: PMC10532613 DOI: 10.3390/life13091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gut dysbiosis has been associated with many chronic diseases, such as obesity, inflammatory bowel disease, and cancer. Gut dysbiosis triggers these diseases through the activation of the immune system by the endotoxins produced by gut microbiota, which leads to systemic inflammation. In addition to pre-/pro-/postbiotics, many natural products can restore healthy gut microbiota composition. Tocotrienol, which is a subfamily of vitamin E, has been demonstrated to have such effects. This scoping review presents an overview of the effects of tocotrienol on gut microbiota according to the existing scientific literature. A literature search to identify relevant studies was conducted using PubMed, Scopus, and Web of Science. Only original research articles which aligned with the review's objective were examined. Six relevant studies investigating the effects of tocotrienol on gut microbiota were included. All of the studies used animal models to demonstrate that tocotrienol altered the gut microbiota composition, but none demonstrated the mechanism by which this occurred. The studies induced diseases known to be associated with gut dysbiosis in rats. Tocotrienol partially restored the gut microbiota compositions of the diseased rats so that they resembled those of the healthy rats. Tocotrienol also demonstrated strong anti-inflammatory effects in these animals. In conclusion, tocotrienol could exert anti-inflammatory effects by suppressing inflammation directly or partially by altering the gut microbiota composition, thus achieving its therapeutic effects.
Collapse
Affiliation(s)
- Aswini Kumareswaran
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Sophia Ogechi Ekeuku
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia;
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Deborah Chia Hsin Chew
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| |
Collapse
|
7
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Khashaba MA, Abdelal IF, Abd El Rahman SM, Abdel Rahman MH. Sequential estimation of the national early warning score-2 and SERUM PRESEPSIN might discriminate sepsis patients who were vulnerable to death in surgical ICU. EGYPTIAN JOURNAL OF ANAESTHESIA 2022. [DOI: 10.1080/11101849.2022.2125249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Mohamed A. Khashaba
- Department of Anesthesia, Pain & ICU, Faculty of Medicine, Benha University, Benha, Egypt
| | - Inas F. Abdelal
- Department of Anesthesia, Pain & ICU, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | |
Collapse
|
9
|
Virzì GM, Mattiotti M, de Cal M, Ronco C, Zanella M, De Rosa S. Endotoxin in Sepsis: Methods for LPS Detection and the Use of Omics Techniques. Diagnostics (Basel) 2022; 13:diagnostics13010079. [PMID: 36611371 PMCID: PMC9818564 DOI: 10.3390/diagnostics13010079] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Lipopolysaccharide (LPS) or endotoxin, the major cell wall component of Gram-negative bacteria, plays a pivotal role in the pathogenesis of sepsis. It is able to activate the host defense system through interaction with Toll-like receptor 4, thus triggering pro-inflammatory mechanisms. A large amount of LPS induces inappropriate activation of the immune system, triggering an exaggerated inflammatory response and consequent extensive organ injury, providing the basis of sepsis damage. In this review, we will briefly describe endotoxin's molecular structure and its main pathogenetic action during sepsis. In addition, we will summarize the main different available methods for endotoxin detection with a special focus on the wider spectrum offered by omics technologies (genomics, transcriptomics, proteomics, and metabolomics) and promising applications of these in the identification of specific biomarkers for sepsis.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
- Correspondence: ; Tel.: +39-0444753650; Fax: +39-0444753949
| | - Maria Mattiotti
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Department of Experimental Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, 36100 Vicenza, Italy
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
| | - Silvia De Rosa
- IRRIV—International Renal Research Institute Vicenza, 36100 Vicenza, Italy
- Centre for Medical Sciences—CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, 38122 Trento, Italy
| |
Collapse
|
10
|
Feng J, Zhang S, Ai T, Wang L, Gao Y, Li W, Zhu M. Effect of CRRT with oXiris filter on hemodynamic instability in surgical septic shock with AKI: A pilot randomized controlled trial. Int J Artif Organs 2022; 45:801-808. [PMID: 35864718 DOI: 10.1177/03913988221107947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Early identification and timely management of septic AKI continue to represent clinical challenges for intensive care. The aim was to evaluate the effect of renal replacement with oXiris filter on clinical outcomes in septic AKI. METHODS This was a single-center randomized controlled trial that enrolled surgical septic shock with AKI patients admitted in the ICU, Renji Hospital, Shanghai Jiao Tong University, School of Medicine from Jan 1, 2021 to Sep 30, 2021, were screened. RESULTS Sixteen subjects that met the inclusion and exclusion criteria were randomized into CRRT with AN69-oXiris group (n = 8) and AN69-ST group (n = 8). The PCT and IL-6 concentration decreased significantly after the first treatment compared to pre-CRRT levels in the oXiris group (PCT: 23.46 [4.18, 84.90] vs 52.79 [9.03, 100.00] µg/L, p = 0.046; IL-6: 3080.15 [527.62, 9806.61] vs 10,457.17 [8150.00, 15,528.87] pg/mL, p = 0.043). The levels of lactate decreased by 1.70 [1.03, 2.83] mmol/L after the first CRRT in the oXiris group (p = 0.028). The norepinephrine infusion rate was decreased by 0.06 [0, 0.09], 0.05 [0, 0.23] and 0.11 [0, 0.23] μg/kg/min at 4, 6, and 8 h in the oXiris group compared to the ST group (p = 0.005, 0.038, and 0.017). CONCLUSION Using the oXiris filter may improve hemodynamic status during initial CRRT in severe surgical septic shock with AKI. Further large multicenter RCTs are needed to determine the effect of the oXiris filter on patient outcomes. (http://www.chictr.org.cn/index.aspx (ChiCTR2200055732)).
Collapse
Affiliation(s)
- Junqi Feng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Shuyi Zhang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Tianyi Ai
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Lihui Wang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Wen Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| | - Mingli Zhu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai,China
| |
Collapse
|