1
|
Xiao C, Su Z, Zhao J, Tan S, He M, Li Y, Liu J, Xu J, Hu Y, Li Z, Fan C, Liu X. Novel regulation mechanism of histone methyltransferase SMYD5 in rheumatoid arthritis. Cell Mol Biol Lett 2025; 30:38. [PMID: 40165083 PMCID: PMC11959843 DOI: 10.1186/s11658-025-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) are crucial for maintaining synovial homeostasis. SMYD5, a member of the histone lysine methyltransferase subfamily SMYDs, is involved in many pathological processes. This study aimed to investigate the role of SMYD5 in regulating synovial fibroblast homeostasis and the pathogenesis of rheumatoid arthritis (RA). METHODS Proteomic screening was conducted to assess SMYD5 expression in the synovium of patients with osteoarthritis (OA) and RA. In vitro, interleukin-1 beta (IL-1β) was used to induce proliferation and inflammation in FLS. Further, we performed loss-of-function and gain-of-function experiments to investigate the biological function of SMYD5. In vivo, adeno-associated virus (AAV) vectors carrying SMYD5 short-hairpin RNA (AAV-shSMYD5) were injected into the knee joints to knock down SMYD5 in a collagen-induced arthritis (CIA) mouse model to evaluate its role in joint damage. RESULTS We observed a significant elevation of SMYD5 expression in the synovial tissues of patients with RA and IL-1β-induced FLS. SMYD5 facilitated posttranslational modifications and activated downstream signaling pathways, thereby promoting proliferation and inflammation in FLS. Mechanistically, SMYD5 mediated the methylation of Forkhead box protein O1 (FoxO1), which accelerated its degradation through ubiquitination, resulting in substantial FLS proliferation. Additionally, SMYD5 promoted lactate release to activate NF-κB signaling pathways by upregulating hexokinases-2 (HK2) expression, a key glycolytic enzyme, thereby intensifying the inflammatory response in FLS. Supporting these findings, intraarticular delivery of AAV-mediated SMYD5 knockdown in the CIA mice model effectively alleviated joint swelling, bone erosion, and overall arthritis severity. CONCLUSIONS Together, these findings suggest that SMYD5 is a dual target for regulating synovial fibroblast homeostasis and the pathogenesis of RA. Targeting SMYD5 through local treatment strategies may provide a novel therapeutic approach for RA, particularly when combined with immunotherapy.
Collapse
Affiliation(s)
- Chenxi Xiao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhenghua Su
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jialin Zhao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Subei Tan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Mengting He
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yuhui Li
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jiayao Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jie Xu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yajie Hu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhongzheng Li
- The 9th Hospital of Ningbo, 68, Xiangbei Road, Jiangbei District, Ningbo, 315020, Zhejiang, China.
| | - Chunxiang Fan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| | - Xinhua Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| |
Collapse
|
2
|
Shakeel L, Shaukat A, Khaliq N, Kashif A, Mujeeb A, Adnan Z, Taj J, Akilimali A. Rheumatoid arthritis: a comprehensive overview of genetic markers, emerging therapies, and personalized medicine. Ann Med Surg (Lond) 2025; 87:696-710. [PMID: 40110258 PMCID: PMC11918739 DOI: 10.1097/ms9.0000000000002890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 03/22/2025] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disorder marked by chronic inflammatory arthritis and systemic effects. The etiology of RA is complex, involving genetic factors like HLA-DR4 and HLA-DR1, as well as environmental influences, particularly smoking, which heightens disease risk. Affecting approximately 1% of the global population, RA is associated with considerable morbidity and mortality, with its prevalence expected to increase due to demographic shifts, especially in certain regions. RA symptoms commonly manifest between ages 35 and 60 but can also affect children under 16 in cases of juvenile RA. Symptoms include prolonged joint stiffness, pain, fatigue, and, in advanced cases, joint deformities. Current treatment approaches involve disease-modifying antirheumatic drugs, biologics, and glucocorticoids to manage symptoms and slow disease progression, though these treatments often present limitations due to adverse effects and varied patient response. The identification of genetic markers, such as HLA-DRB1 and PTPN22, supports the growing emphasis on personalized treatment strategies that account for genetic and lifestyle factors. Non-pharmacological approaches - diet adjustments, physical activity, and stress management - are increasingly valued for their complementary role in RA management. Lifestyle interventions, including whole-food, plant-based diets and physical therapy, show promise in reducing inflammation and improving joint function. Technological advancements, like telemedicine, mobile health applications, and artificial intelligence, are enhancing RA diagnosis and treatment, making care more precise and accessible. Despite these advancements, RA remains incurable, necessitating continued research into novel therapeutic targets and approaches. A comprehensive, patient-centered approach that integrates lifestyle modifications, preventive strategies, and innovative treatments is essential for improving RA management and patient outcomes.
Collapse
Affiliation(s)
- Laiba Shakeel
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Nawal Khaliq
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Aayat Kashif
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Azka Mujeeb
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Zahabia Adnan
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Javeria Taj
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Aymar Akilimali
- Department of research, Medical Research circle, Goma, Democratic Republic of the Congo
| |
Collapse
|
3
|
Mancino C, Franke M, Greco A, Sontam T, Mcculloch P, Corbo C, Taraballi F. RNA therapies for musculoskeletal conditions. J Control Release 2025; 377:756-766. [PMID: 39617171 DOI: 10.1016/j.jconrel.2024.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Musculoskeletal conditions impact 1.71 billion individuals, posing significant challenges due to their complexity, varying clinical courses, and unclear molecular mechanisms. Conventional spectrum treatments often prove inadequate, underscoring the importance of targeted therapies. Recently, RNA-based technologies have emerged as a groundbreaking approach in therapeutics, showing applications in joint related ailments. This perspective aims to examine endeavors exploring the use of RNA-based treatments in both experimental and clinical contexts for addressing joint issues like osteoarthritis, rheumatoid arthritis, and cartilage injuries. The cited studies demonstrate how mRNA can stimulate the production of proteins that aid in controlling inflammation, fostering tissue regeneration and repairing cartilage damage. In summary, this perspective offers an overview of the progress made in mRNA-based technologies for treating related conditions by highlighting favorable findings from preclinical research and encouraging results from clinical trials. With advancements in the field, mRNA therapeutics have the potential to revolutionize treatment approaches for musculoskeletal disorders, bringing renewed hope to the future of musculoskeletal conditions.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Madeline Franke
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Antonietta Greco
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Tarun Sontam
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy; IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20161 Milan, Italy.
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Chapa-Villarreal FA, Stephens M, Pavlicin R, Beussman M, Peppas NA. Therapeutic delivery systems for rheumatoid arthritis based on hydrogel carriers. Adv Drug Deliv Rev 2024; 208:115300. [PMID: 38548104 DOI: 10.1016/j.addr.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease suffered by millions of people worldwide. It can significantly affect the patient's quality of life by damaging not only the joints but also organs such as the lungs and the heart. RA is normally treated using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease-modifying antirheumatic drugs (DMARDs), and biologics. These active agents often cause side effects and offer low efficacy due to their lack of specificity and limited retention time. In an attempt to improve RA treatments, hydrogel-based systems have been proposed as drug delivery carriers. Due to their exceptional adaptability and biocompatibility, hydrogels have the potential of enhancing the delivery of RA therapy through different administration routes in an efficient and effective manner. In this review, we explore the application of hydrogel systems as potential carriers in RA treatment. Additionally, we discuss recent work in the field and highlight the required hydrogel properties, depending on the administration route. The outstanding potential of hydrogel systems as carriers for RA was demonstrated; however, there is extensive research yet to be done to improve available treatments for RA.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin TX, USA, 78712; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712
| | - Madeleine Stephens
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712
| | - Rachel Pavlicin
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712
| | - Micaela Beussman
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin TX, USA, 78712
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin TX, USA, 78712; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin TX, USA, 78712; Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin TX, USA, 78712; Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Blvd., Austin TX, USA, 78723.
| |
Collapse
|
5
|
Pitea M, Canale FA, Porto G, Verduci C, Utano G, Policastro G, Alati C, Santoro L, Imbalzano L, Martino M. The Role of MicroRNA in Graft-Versus-Host-Disease: A Review. Genes (Basel) 2023; 14:1796. [PMID: 37761936 PMCID: PMC10530280 DOI: 10.3390/genes14091796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a clinically challenging modality for the treatment of many hematologic diseases such as leukemia, lymphoma, and myeloma. Graft-versus-host disease (GVHD) is a common complication after allo-HSCT and remains a major cause of morbidity and mortality, limiting the success of a potentially curative transplant. Several microRNAs (miRNAs) have recently been shown to impact the biology of GVHD. They are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation, and contribute to the pathological function of T-cells during GvHD. Here, we review the key role of miRNAs contributing to the GvHD; their detection might be an interesting possibility in the early diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Martina Pitea
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Filippo Antonio Canale
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Gaetana Porto
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Chiara Verduci
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giovanna Utano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giorgia Policastro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Caterina Alati
- Hematology Unit, Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Ludovica Santoro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Lucrezia Imbalzano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Massimo Martino
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| |
Collapse
|
6
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
7
|
Zhang X, Liu Y, Xiao C, Guan Y, Gao Z, Huang W. Research Advances in Nucleic Acid Delivery System for Rheumatoid Arthritis Therapy. Pharmaceutics 2023; 15:1237. [PMID: 37111722 PMCID: PMC10145518 DOI: 10.3390/pharmaceutics15041237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the lives of nearly 1% of the total population worldwide. With the understanding of RA, more and more therapeutic drugs have been developed. However, lots of them possess severe side effects, and gene therapy may be a potential method for RA treatment. A nanoparticle delivery system is vital for gene therapy, as it can keep the nucleic acids stable and enhance the efficiency of transfection in vivo. With the development of materials science, pharmaceutics and pathology, more novel nanomaterials and intelligent strategies are applied to better and safer gene therapy for RA. In this review, we first summarized the existing nanomaterials and active targeting ligands used for RA gene therapy. Then, we introduced various gene delivery systems for RA treatment, which may enlighten the relevant research in the future.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Liu S, Wang K, Li J, Liu Y, Zhang Z, Meng D. MiR-30e-5p deficiency exerts an inhibitory effect on inflammation in rheumatoid arthritis via regulating Atl2 expression. Arch Rheumatol 2023; 38:119-128. [PMID: 37235116 PMCID: PMC10208610 DOI: 10.46497/archrheumatol.2023.9526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVES This study aims to investigate the inflammatory effect of the microRNA (miRNA) miR-30e-5p on rheumatoid arthritis (RA) development in RA mice and fibroblast-like synoviocytes (FLS). MATERIALS AND METHODS MiR-30e-5p and atlastin GTPase 2 (Atl2) expression in RA tissues and RA-FLS was evaluated using real-time quantitative polymerase chain reaction. The function of miR-30e-5p in inflammation of RA mice and RA-FLS was analyzed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. 5-ethynyl-2'-deoxyuridine (EdU) assay was used to detect RA-FLS proliferation. Luciferase reporter assay was to confirm the interaction between miR-30e-5p and Atl2. RESULTS MiR-30e-5p expression was upregulated in the tissues from RA mice. Silencing miR-30e-5p alleviated inflammation in RA mice and RA-FLS. MiR-30e-5p negatively modulated Atl2 expression. Atl2 knockdown exerted a proinflammatory effect on RA-FLS. Atl2 knockdown rescued the inhibitory effect of miR-30e-5p knockdown on proliferation and inflammatory response of RA-FLS. CONCLUSION MiR-30e-5p knockdown inhibited the inflammatory response in RA mice and RA-FLS through Atl2.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Rheumatology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Kai Wang
- Department of Rheumatology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Ju Li
- Department of Rheumatology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Yan Liu
- Department of Rheumatology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Zhongyuan Zhang
- Department of Rheumatology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Deqian Meng
- Department of Rheumatology, the Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
9
|
Rheumatoid arthritis: advances in treatment strategies. Mol Cell Biochem 2023; 478:69-88. [PMID: 35725992 DOI: 10.1007/s11010-022-04492-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 01/17/2023]
Abstract
Rheumatoid arthritis (RA) is characterised by severe joint and bone damage due to heightened autoimmune response at the articular sites. Worldwide annual incidence and prevalence rate of RA is 3 cases per 10,000 population and 1%, respectively. Several genetic and environmental (microbiota, smoking, infectious agents) factors contribute to its pathogenesis. Although convention treatment strategies, predominantly Disease Modifying Anti Rheumatic Drugs (DMARDs) and Glucocorticoids (GC), are unchanged as the primary line of treatment; novel strategies consisting of biological DMARDs, are being developed and explored. Personalized approaches using biologicals targetspecific pathways associated with disease progression. However, considering the economic burden and side-effects associated with these, there is an unmet need on strategies for early stratification of the inadequate responders with cDMARDs. As RA is a complex disease with a variable remission rate, it is important not only to evaluate the current status of drugs in clinical practice but also those with the potential of personalised therapeutics. Here, we provide comprehensive data on the treatment strategies in RA, including studies exploring various combination strategies in clinical trials. Our systematic analysis of current literature found that conventional DMARDs along with glucocorticoid may be best suited for early RA cases and a combination of conventional and targeted DMARDs could be effective for treating seronegative patients with moderate to high RA activity. Clinical trials with insufficient responders to Methotrexate suggest that adding biologicals may help in such cases. However, certain adverse events associated with the current therapy advocate exploring novel therapeutic approaches such as gene therapy, mesenchymal stem cell therapy in future.
Collapse
|
10
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
11
|
Brouxhon SM, O'Banion MK, Kyrkanides S. AAV gene therapy vectors in the TMJ. Clin Exp Dent Res 2022; 8:1561-1566. [PMID: 35871478 PMCID: PMC9760151 DOI: 10.1002/cre2.636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES The goal of this project was to evaluate the use of two adeno-associated viral vector serotypes, adeno-associated viral vectors (AAV)-2 and AAV-6, approved for and used for gene therapy in humans, for the delivery of therapeutic genes to the temporomandibular joint (TMJ) and the attendant sensory nerves. METHODS Young adult wild-type C57BL/6 mice were intra-articularly inoculated with AAV-2 and AAV-6 encoding the reporter gene gfp, the expression of which was assessed in the TMJ as well as along nerves innervating the TMJ. RESULTS AAV-2 and AAV-6 serotypes were characterized by varying levels of tissue tropism demonstrating different efficacy of infection for articular chondrocytes, meniscal fibroblasts, and trigeminal neurons. Specifically, AAV-2 infected both neurons and articular chondrocytes/meniscal fibroblasts, whereas AAV-6 showed selectivity primarily for neurons. CONCLUSIONS The results of this study are clinically significant in the successful application of gene therapy vectors for TMJ disorders, as this new knowledge will allow for appropriate targeting of specific therapeutic genes to selective tissues (neurons vs. chondrocytes/fibroblasts) as needed by using specific viral vector serotypes.
Collapse
Affiliation(s)
- Sabine M. Brouxhon
- Department of Physiology, School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Michael Kerry O'Banion
- Departments of Neuroscience and of Neurology, School of Medicine & DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Stephanos Kyrkanides
- Departments of Neuroscience and of Neurology, School of Medicine & DentistryUniversity of Rochester Medical CenterRochesterNew YorkUSA,Department of Oral Health Science, College of DentistryUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
12
|
Wang X, Cao W, Sun C, Wang Y, Wang M, Wu J. Development of pH-sensitive dextran-based methotrexate nanodrug for rheumatoid arthritis therapy through inhibition of JAK-STAT pathways. Int J Pharm 2022; 622:121874. [PMID: 35636630 DOI: 10.1016/j.ijpharm.2022.121874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and symmetrical autoimmune disease that primarily characterized with articular synovial hyperplasia, joint swelling, cartilage and bone destruction. The in-depth understanding of the role of immune signaling pathway inhibitors provides inspiration for the construction of new and more effective strategy for RA therapy. In this study, by loading methotrexate (MTX) into an acetalated dextran biopolymer, AcDEX, we developed a pH-sensitive, MTX-loaded and molecularly targeted nanodrug MTX@pH-AcDEX NPs) to decrease the toxicity of MTX and simultaneously enhance its therapeutic effect. The resultant MTX@pH-AcDEX NPs showed the spherical morphology and notable pH-responsiveness with high drug loading of 88.32%. As demonstrated in vitro and in vivo, the reduced cytotoxicity of both RAW264.7 cells and LPS-activated RAW264.7 cells treated with MTX@pH-AcDEX NPs was found compared to free MTX. Upon intravenous administration into adjuvant-induced arthritis (AIA) rat model, the nanodrug had potent pharmacokinetic and pharmacodynamic profiles, which can accumulate in RA lesions and release MTX inhibitors for regulating the JAK-STAT pathways. As a result, the MTX@pH-AcDEX NPs achieved the cartilage and bone protective and a better anti-inflammatory effect with negligible systemic toxicity, suggesting the strong potential of safe and effective nanodrug for RA therapy as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Wenjun Cao
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Chuanfen Sun
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yutie Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Mingyu Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| | - Jiarong Wu
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
13
|
Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-723. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | | | - Jigresh Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Hue Vu-Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
14
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
15
|
Liu L, Chen H, Jiang T, He D. MicroRNA-106b Overexpression Suppresses Synovial Inflammation and Alleviates Synovial Damage in Patients with Rheumatoid Arthritis. Mod Rheumatol 2021; 32:1054-1063. [PMID: 34850088 DOI: 10.1093/mr/roab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To explore the effect of miR-106b on synovial inflammation and damage in rheumatoid arthritis (RA) patients, and further to investigate its possible mechanism. METHODS : Quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, in situ hybridization and immunohistochemistry assay were separately used to verify the levels of miR-106b and cytokines in the synovial tissues of patients with RA or osteoarthritis (OA). Pearson correlation analysis was conducted to examine the bivariate relationship between miR-106b and cytokines or RANKL. Following the isolation and culture of fibroblast-like synoviocytes (FLS), the cells were transfected with lentivirus-mediated miR-106b mimic, miR-106b inhibitor, and negative control miR-106b mimic, respectively. Thereafter, cell proliferation was measured by Cell Counting Kit-8 assay, and cell invasion and migration capacity was assessed by Transwell assay. Furthermore, concentration and expression of cytokines were separately detected by Enzyme linked immunosorbent assay and Western blot. RESULTS Compared with osteoarthritis, validation by qRT-PCR showed that RA patients had a lower level of miR-106b and higher levels of receptor activator of nuclear factor-κ B ligand (RANKL), tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Additionally, the scatter plot showed that the relative transcription of miR-106b level was negatively correlated to the level of TNF-a, IL-6, and RNKAL in the synovial tissues of both RA and OA patients (All P<0.05). Furthermore, miR-106b overexpression suppressed cell proliferation, migration and invasion capacity of human RA-FLS. CONCLUSIONS miR-106b overexpression suppresses synovial inflammation and alleviates synovial damage, thus it may be served as a potential therapeutic target for RA patients.
Collapse
Affiliation(s)
- Linchen Liu
- Department of Rheumatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing China
| | - Haiyan Chen
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Ting Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Dongyi He
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
16
|
Paknahad AA, Kerr L, Wong DA, Kolios MC, Tsai SSH. Biomedical nanobubbles and opportunities for microfluidics. RSC Adv 2021; 11:32750-32774. [PMID: 35493576 PMCID: PMC9042222 DOI: 10.1039/d1ra04890b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022] Open
Abstract
The use of bulk nanobubbles in biomedicine is increasing in recent years, which is attributable to the array of therapeutic and diagnostic tools promised by developing bulk nanobubble technologies. From cancer drug delivery and ultrasound contrast enhancement to malaria detection and the diagnosis of acute donor tissue rejection, the potential applications of bulk nanobubbles are broad and diverse. Developing these technologies to the point of clinical use may significantly impact the quality of patient care. This review compiles and summarizes a representative collection of the current applications, fabrication techniques, and characterization methods of bulk nanobubbles in biomedicine. Current state-of-the-art generation methods are not designed to create nanobubbles of high concentration and low polydispersity, both characteristics of which are important for several bulk nanobubble applications. To date, microfluidics has not been widely considered as a tool for generating nanobubbles, even though the small-scale precision and real-time control offered by microfluidics may overcome the challenges mentioned above. We suggest possible uses of microfluidics for improving the quality of bulk nanobubble populations and propose ways of leveraging existing microfluidic technologies, such as organ-on-a-chip platforms, to expand the experimental toolbox of researchers working to develop biomedical nanobubbles. The use of bulk nanobubbles in biomedicine is increasing in recent years. This translates into new opportunities for microfluidics, which may enable the generation of higher quality nanobubbles that lead to advances in diagnostics and therapeutics.![]()
Collapse
Affiliation(s)
- Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Liam Kerr
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada
| | - Daniel A Wong
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Electrical, Computer, and Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Department of Physics, Ryerson University Toronto Ontario M5B 2K3 Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada .,Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Ryerson University and St. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada.,Keenan Research Centre for Biomedical Science, Unity Health Toronto 209 Victoria Street Toronto Ontario M5B 1W8 Canada.,Graduate Program in Biomedical Engineering, Ryerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| |
Collapse
|
17
|
Sindhu RK, Madaan P, Chandel P, Akter R, Adilakshmi G, Rahman MH. Therapeutic Approaches for the Management of Autoimmune Disorders via Gene Therapy: Prospects, Challenges, and Opportunities. Curr Gene Ther 2021; 22:245-261. [PMID: 34530709 DOI: 10.2174/1566523221666210916113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/05/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune diseases are the diseases that result due to the overactive immune response, and comprise systemic autoimmune diseases like rheumatoid arthritis (RA), sjӧgren's syndrome (SS), and organ-specific autoimmune diseases like type-1 diabetes mellitus (T1DM), myasthenia gravis (MG), and inflammatory bowel disease (IBD). Currently, there is no long-term cure; but, several treatments exist which retard the evolution of the disease, embracing gene therapy, which has been scrutinized to hold immense aptitude for the management of autoimmune diseases. OBJECTIVE The review highlights the pathogenic mechanisms and genes liable for the development of autoimmune diseases, namely T1DM, type-2 diabetes mellitus (T2DM), RA, SS, IBD, and MG. Furthermore, the review focuses on investigating the outcomes of delivering the corrective genes with their specific viral vectors in various animal models experiencing these diseases to determine the effectiveness of gene therapy. METHODS Numerous review and research articles emphasizing the tremendous potential of gene therapy in the management of autoimmune diseases were procured from PubMed, MEDLINE, Frontier, and other databases and thoroughly studied for writing this review article. RESULTS The various animal models that experienced treatment with gene therapy have displayed regulation in the levels of proinflammatory cytokines, infiltration of lymphocytes, manifestations associated with autoimmune diseases, and maintained equilibrium in the immune response, thereby hinder the progression of autoimmune diseases. CONCLUSION Gene therapy has revealed prodigious aptitude in the management of autoimmune diseases in various animal studies, but further investigation is essential to combat the limitations associated with it and before employing it on humans.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - G Adilakshmi
- Department of PhysicxVikramaSimahpuri University, P.G. Centre, kavil-524201, Andhra Pradesh. India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| |
Collapse
|
18
|
van Alem CMA, Metselaar JM, van Kooten C, Rotmans JI. Recent Advances in Liposomal-Based Anti-Inflammatory Therapy. Pharmaceutics 2021; 13:pharmaceutics13071004. [PMID: 34371695 PMCID: PMC8309101 DOI: 10.3390/pharmaceutics13071004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Liposomes can be seen as ideal carriers for anti-inflammatory drugs as their ability to (passively) target sites of inflammation and release their content to inflammatory target cells enables them to increase local efficacy with only limited systemic exposure and adverse effects. Nonetheless, few liposomal formulations seem to reach the clinic. The current review provides an overview of the more recent innovations in liposomal treatment of rheumatoid arthritis, psoriasis, vascular inflammation, and transplantation. Cutting edge developments include the liposomal delivery of gene and RNA therapeutics and the use of hybrid systems where several liposomal bilayer features, or several drugs, are combined in a single formulation. The majority of the articles reviewed here focus on preclinical animal studies where proof-of-principle of an improved efficacy-safety ratio is observed when using liposomal formulations. A few clinical studies are included as well, which brings us to a discussion about the challenges of clinical translation of liposomal nanomedicines in the field of inflammatory diseases.
Collapse
Affiliation(s)
- Carla M. A. van Alem
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cees van Kooten
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
- Correspondence: ; Tel.: +31-(0)-7152-62148
| |
Collapse
|
19
|
Tsitrouli Z, Akritidou MA, Genitsaris S, van Willigen G. Treatment of Rheumatoid Arthritis with Gene Therapy Applications: Biosafety and Bioethical Considerations. BIOTECH 2021; 10:11. [PMID: 35822765 PMCID: PMC9245461 DOI: 10.3390/biotech10030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune and inflammatory disease that affects the synovium (lining that surrounds the joints), causing the immune system to attack its own healthy tissues. Treatment options, to the current day, have serious limitations and merely offer short-term alleviation to the pain. Using a theoretical exercise based on literature, a new potentially viable therapy has been proposed. The new therapy focusses on a long-term treatment of RA based on gene therapy, which is only active when inflammation of the joint occurs. This treatment will prevent side effects of systemic application of drugs. Furthermore, the benefits of this treatment for the patient from a socio-economic perspective has been discussed, focusing on the quality of life of the patent and lower costs for the society.
Collapse
Affiliation(s)
- Zinovia Tsitrouli
- School of Humanities, Social Sciences and Economics, International Hellenic University, 57001 Thermi, Greece; (Z.T.); (M.-A.A.)
| | - Maria-Anna Akritidou
- School of Humanities, Social Sciences and Economics, International Hellenic University, 57001 Thermi, Greece; (Z.T.); (M.-A.A.)
| | - Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, 16784 Athens, Greece;
| | - Gijsbert van Willigen
- Leiden University Medical Center, Department of Health, Safety and the Environment, Leiden University, 9500 Leiden, The Netherlands
| |
Collapse
|
20
|
Korneyenkov MA, Zamyatnin AA. Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics 2021; 13:pharmaceutics13050750. [PMID: 34069541 PMCID: PMC8160765 DOI: 10.3390/pharmaceutics13050750] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Today, adeno-associated virus (AAV) is an extremely popular choice for gene therapy delivery. The safety profile and simplicity of the genome organization are the decisive advantages which allow us to claim that AAV is currently among the most promising vectors. Several drugs based on AAV have been approved in the USA and Europe, but AAV serotypes’ unspecific tissue tropism is still a serious limitation. In recent decades, several techniques have been developed to overcome this barrier, such as the rational design, directed evolution and chemical conjugation of targeting molecules with a capsid. Today, all of the abovementioned approaches confer the possibility to produce AAV capsids with tailored tropism, but recent data indicate that a better understanding of AAV biology and the growth of structural data may theoretically constitute a rational approach to most effectively produce highly selective and targeted AAV capsids. However, while we are still far from this goal, other approaches are still in play, despite their drawbacks and limitations.
Collapse
Affiliation(s)
- Maxim A. Korneyenkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-622-9843
| |
Collapse
|
21
|
Characterization of Recombinant Adeno-Associated Viruses (rAAVs) for Gene Therapy Using Orthogonal Techniques. Pharmaceutics 2021; 13:pharmaceutics13040586. [PMID: 33923984 PMCID: PMC8074050 DOI: 10.3390/pharmaceutics13040586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Viruses are increasingly used as vectors for delivery of genetic material for gene therapy and vaccine applications. Recombinant adeno-associated viruses (rAAVs) are a class of viral vector that is being investigated intensively in the development of gene therapies. To develop efficient rAAV therapies produced through controlled and economical manufacturing processes, multiple challenges need to be addressed starting from viral capsid design through identification of optimal process and formulation conditions to comprehensive quality control. Addressing these challenges requires fit-for-purpose analytics for extensive characterization of rAAV samples including measurements of capsid or particle titer, percentage of full rAAV particles, particle size, aggregate formation, thermal stability, genome release, and capsid charge, all of which may impact critical quality attributes of the final product. Importantly, there is a need for rapid analytical solutions not relying on the use of dedicated reagents and costly reference standards. In this study, we evaluate the capabilities of dynamic light scattering, multiangle dynamic light scattering, and SEC–MALS for analyses of rAAV5 samples in a broad range of viral concentrations (titers) at different levels of genome loading, sample heterogeneity, and sample conditions. The study shows that DLS and MADLS® can be used to determine the size of full and empty rAAV5 (27 ± 0.3 and 33 ± 0.4 nm, respectively). A linear range for rAAV5 size and titer determination with MADLS was established to be 4.4 × 1011–8.7 × 1013 cp/mL for the nominally full rAAV5 samples and 3.4 × 1011–7 × 1013 cp/mL for the nominally empty rAAV5 samples with 3–8% and 10–37% CV for the full and empty rAAV5 samples, respectively. The structural stability and viral load release were also inferred from a combination of DLS, SEC–MALS, and DSC. The structural characteristics of the rAAV5 start to change from 40 °C onward, with increasing aggregation observed. With this study, we explored and demonstrated the applicability and value of orthogonal and complementary label-free technologies for enhanced serotype-independent characterization of key properties and stability profiles of rAAV5 samples.
Collapse
|
22
|
Zhai X, Zhang Y, Xin S, Cao P, Lu J. Insights Into the Involvement of Circular RNAs in Autoimmune Diseases. Front Immunol 2021; 12:622316. [PMID: 33717126 PMCID: PMC7947908 DOI: 10.3389/fimmu.2021.622316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, endogenous, non-coding RNA (ncRNA) molecules formed by the backsplicing of messenger RNA (mRNA) precursors and have covalently closed circular structures without 5′-end caps and 3′-end polyadenylation [poly(A)] tails. CircRNAs are characterized by abundant species, stable structures, conserved sequences, cell- or tissue-specific expression, and widespread and stable presence in many organisms. Therefore, circRNAs can be used as biomarkers for the prediction, diagnosis, and treatment of a variety of diseases. Autoimmune diseases (AIDs) are caused by defects in immune tolerance or abnormal immune regulation, which leads to damage to host organs. Due to the complexity of the pathophysiological processes of AIDs, clinical therapeutics have been suboptimal. The emergence of circRNAs sheds new light on the treatment of AIDs. In particular, circRNAs mainly participate in the occurrence and development of AIDs by sponging targets. This review systematically explains the formation, function, mechanism, and characteristics of circRNAs in the context of AIDs. With a deeper understanding of the pathophysiological functions of circRNAs in the pathogenesis of AIDs, circRNAs may become reasonable, accurate, and effective biomarkers for the diagnosis and treatment of AIDs in the future.
Collapse
Affiliation(s)
- Xingyu Zhai
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
23
|
Zheng J, Zeng P, Zhang H, Zhou Y, Liao J, Zhu W, Jia N, Lin L. Long noncoding RNA ZFAS1 silencing alleviates rheumatoid arthritis via blocking miR-296-5p-mediated down-regulation of MMP-15. Int Immunopharmacol 2021; 90:107061. [PMID: 33191176 DOI: 10.1016/j.intimp.2020.107061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 01/25/2023]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease, deprives patients' walking ability and reduces their life quality worldwide. Though recent studies have indicated the role of long noncoding RNA (lncRNA) ZFAS1 in several diseases, however, its role in RA remains uncharacterized. The present study aimed to unravel the the effect of ZFAS1 on RA. Herein, the RA mouse model and the human RA synoviocyte MH7A cell lines stimulated with TNF-α were established. ZFAS1 was next determined to be highly expressed in the mice with RA-like symptoms and TNF-α-stimulated MH7A cells while inhibiting ZFAS1 was demonstrated to promote proliferation and suppress apoptosis of MH7A cells. Furthermore, ZFAS1 knockdown exerted anti-inflammation effect in vitro and in vivo and reduced the arthritis index value. Moreover, RNA immunoprecipitation and dual-luciferase reporter assays identified the binding of ZFAS1 to microRNA (miR)-296-5p as well as the binding of miR-296-5p to matrix metalloproteinase-15 (MMP-15). Of note, ZFAS1 could bind miR-296-5p to up-regulate the expression of MMP-15. Our results from in vitro and in vivo experiments demonstrated silencing ZFAS1 mitigated RA-like symptoms such as inflammation and hyperplasia via miR-296-5p-dependent inhibition of MMP-15. Taken altogether, our study confirmed that ZFAS1 involved in RA progression by competitively binding to miR-296-5p and regulating MMP-15 expression.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Binding Sites
- Cell Line
- Databases, Genetic
- Disease Progression
- Down-Regulation
- Humans
- Joints/enzymology
- Joints/pathology
- Male
- Matrix Metalloproteinase 15/genetics
- Matrix Metalloproteinase 15/metabolism
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNAi Therapeutics
- Signal Transduction
- Synoviocytes/enzymology
- Synoviocytes/pathology
- Mice
Collapse
Affiliation(s)
- Jing Zheng
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China; Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Peiying Zeng
- Department of Rheumatology, Peiking University Shenzhen Hospital, Shenzhen 518000, PR China
| | - Huitao Zhang
- Department of Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Youyou Zhou
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Juan Liao
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Weiping Zhu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China; Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| | - Ning Jia
- Department of Rheumatology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China; Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| | - Lin Lin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China; Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| |
Collapse
|
24
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
25
|
Chauhan RK, Sharma PK, Srivastava S. Role of signaling pathway in biological cause of Rheumatoid arthritis. Curr Drug Res Rev 2020; 13:130-139. [PMID: 33172384 DOI: 10.2174/2589977512999201109215004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Rheumatoid Arthritis is a chronic progressive inflammatory auto-immune disease in which the immune system of the body attacks its cartilage and joints lining. It not only affects synovial joints but also many other sites including heart, blood vessels, and skins. It is more common in females than in males. The exact cause of rheumatoid arthritis is not well established but the hypothesis reported in the literature is that in the development stage of the disease, both genetics and environmental factors can play an inciting role. Along with these factors alteration in the normal physiology of enzymatic action, acts as a trigger to develop this condition. Numerous signaling pathways involved in the pathogenesis of Rheumatoid Arthritis involves activation of mitogen-activated protein kinase, kinases Janus family, P-38 Mitogen-Activated Protein Kinase, Nuclear Factor-kappa B. Interleukin-1 to play a proinflammatory cytokine that plays an important role in inflammation in RA. These are also associated with an increase in neutrophil, macrophage and lymphocytic chemotaxis, mast cell degranulation, activation, maturation and survival of T-cells and B-cells activated. These signaling pathways also show that p38α downregulation in myeloid cells exacerbates the severity of symptoms of arthritis. Thus, present review carters about the detail of different signaling pathways and their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Rakesh Kumar Chauhan
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| | - Shikha Srivastava
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| |
Collapse
|
26
|
Qing P, Liu Y. Inhibitory role of long non-coding RNA OIP5-AS1 in rheumatoid arthritis progression through the microRNA-448-paraoxonase 1-toll-like receptor 3-nuclear factor κB axis. Exp Physiol 2020; 105:1708-1719. [PMID: 32770578 DOI: 10.1113/ep088608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the functions of long non-coding (lnc) RNA OIP5-AS1 in development of rheumatoid arthritis inflammation and what is the molecular mechanism? What is the main finding and its importance? LncRNA OIP5-AS1 mitigates rheumatoid arthritis progression through the competitive endogenous RNA network involving the miR-448-paraoxonase 1 axis and through the inactivation of the toll-like receptor 3-nuclear factor κB signalling pathway. This study may offer new ideas for molecularly based control of rheumatoid arthritis. ABSTRACT Rheumatoid arthritis (RA) is an autoimmune disorder with dysregulation of long non-coding RNAs (lncRNAs) possibly involved. This study aimed to inquire into the roles of lncRNA OIP5-AS1 in RA progression. A rat model of RA was induced. Overexpression of OIP5-AS1 was introduced in the model rats, and the changes in paw swelling, RA severity and the inflammatory factors interleukin (IL)-1β, IL-10, IL-6 and tumour necrosis factor α were measured. Fibroblast-like synoviocytes (FLSs) from RA patients were collected for in vitro experiments. A gain- and loss-of function study of OIP5-AS1, miR-448 and paraoxonase 1 (PON1) was performed to explore their roles in RA-FLS growth, apoptosis and inflammation. A toll-like receptor 3 (TLR3)-specific agonist, polyinosine-polycytidylic acid, or a nuclear factor κB (NF-κB)-specific antagonist, QNZ, was administrated in RA-FLSs. Consequently, overexpression of OIP5-AS1 reduced the symptom severity and the levels of inflammatory factors in RA rats. OIP5-AS1 could bind to miR-448 to up-regulate PON1 expression. Further overexpression of miR-448 reversed the effects of OIP5-AS1, while overexpression of PON1 inhibited RA-FLS growth and inflammation. In addition, TLR3 activation promoted RA progression. To conclude, this study evidenced that lncRNA OIP5-AS1 may mitigate RA progression through the miR-448-PON1 axis and through the inactivation of the TLR3-NF-κB signalling pathway.
Collapse
Affiliation(s)
- Pingying Qing
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
27
|
Wen J, Liu J, Jiang H, Wan L, Xin L, Sun Y, Zhang P, Sun Y, Zhang Y, Du X, Wang X, Wang J. lncRNA expression profiles related to apoptosis and autophagy in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FEBS Open Bio 2020; 10:1642-1654. [PMID: 32569434 PMCID: PMC7396444 DOI: 10.1002/2211-5463.12913] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are >200-bp molecules that do not generally code for proteins. Human lncRNAs have well-characterized roles in gene expression regulation, particularly with regard to protein-coding genes, and their dysregulation has been linked to disease. Here, we set out to investigate changes in the expression of lncRNAs related to apoptosis and autophagy in the peripheral blood mononuclear cells (PBMCs) of rheumatoid arthritis (RA). In addition, we aimed to correlate lncRNA expression profiles with clinical indexes and self-perception of patients (SPP). To this end, we employed RNA sequencing of lncRNAs in PBMCs from three patients with RA and three healthy controls. We used bioinformatics to screen several dysregulated lncRNAs related to apoptosis and autophagy. To validate key lncRNA candidates, we performed quantitative reverse transcriptase-PCR on 20 patients with RA and 20 healthy controls. We found the expression of seven lncRNAs (MAPKAPK5-AS1, ENST00000619282, C5orf17, LINC01189, LINC01006, DSCR9 and MIR22HG) was significantly altered in PBMCs of patients with RA. Receiver operating characteristic curve analysis suggested that MIR22HG [area under the curve (AUC) = 0.846, P = 0.000], DSCR9 (AUC = 0.783, P = 0.005), LINC01189 (AUC = 0.677, P = 0.034), MAPKAPK5-AS1 (AUC = 0.644, P = 0.025) and ENST00000619282 (AUC = 0.636, P = 0.043) are potential biomarkers of RA. Spearman's correlation analysis revealed selected lncRNAs correlated with clinical indexes and SPP. Therefore, we highlight that some lncRNAs related to apoptosis and autophagy may serve as potential biomarkers for diagnosis and monitoring of RA progression, which also correlate with several clinical indexes and SPP.
Collapse
Affiliation(s)
- Jianting Wen
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Jian Liu
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Hui Jiang
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Lei Wan
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Ling Xin
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Yue Sun
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Pingheng Zhang
- Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanqiu Sun
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Ying Zhang
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Xinlei Du
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Xin Wang
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Jie Wang
- Anhui University of Traditional Chinese MedicineHefeiChina
| |
Collapse
|
28
|
Inhibiting role of long non-coding RNA LINC01197 in inflammation in rheumatoid arthritis through the microRNA-150/THBS2 axis. Exp Cell Res 2020; 394:112136. [PMID: 32540401 DOI: 10.1016/j.yexcr.2020.112136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Rheumatoid arthritis (RA) is a commonly diagnosed systemic autoimmune disease. Aberrant expression of long non-coding RNAs (lncRNAs) is closely linked to the development of RA. This study was conducted to explore the functions of the lncRNA LINC01197 in RA progression. METHODS Differentially expressed lncRNAs/microRNAs/mRNAs in patients with RA were analyzed using RNA microarrays. A mouse model with RA was established and RA-fibroblast-like synoviocytes (RA-FLS) were acquired for in vitro experiments. The function of LINC01197 in inflammation and RA progression in mice and its role in the viability of RA-FLS were determined by experiments involving its overexpression or suppression. The sub-cellular localization of LINC01197 was determined and the downstream molecules involved in LINC01197-mediated events were identified. RESULTS LINC01197 was poorly expressed in the synovial tissues in the RA model mice. Overexpression of LINC01197 reduced RA severity in mice and inhibited proliferation and inflammatory responses as well as promoted apoptosis in RA-FLS. Online predictions and dual luciferase reporter gene assays suggested that LINC01197 could bind to miR-150 and further regulate THBS2 expression. LINC01197 promoted THBS2 expression through miR-150 sponging and inactivated the TLR4/NF-κB signaling pathway, thus alleviating RA inflammation. CONCLUSION The current study suggested that LINC01197 sponged miR-150 to promote THBS2 expression, leading to TLR4/NF-κB inactivation, and ameliorated RA inflammation. These findings may offer new insights into RA treatment.
Collapse
|