1
|
Spivey EC, Yin J, Chaum E, Wikswo JP. A Microfluidic Platform for the Time-Resolved Interrogation of Polarized Retinal Pigment Epithelial Cells. Transl Vis Sci Technol 2023; 12:28. [PMID: 38010283 PMCID: PMC10683772 DOI: 10.1167/tvst.12.11.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose Cells grown in milliliter volume devices have difficulty measuring low-abundance secreted factors due to low resulting concentrations. Using microfluidic devices increases concentration; however, the constrained geometry makes phenotypic characterization with transepithelial electrical resistance more difficult and less reliable. Our device resolves this problem. Methods We designed and built a novel microfluidic "Puck" assembly using laser-cut pieces from preformed sheets of silicone and commercial off-the-shelf parts. Transwell membranes containing polarized retinal pigment epithelial (RPE) cells were reversibly sealed within the Puck and used to study polarized protein secretion. Protein secretion from the apical and basal surfaces in response to hypoxic conditions was quantified using an immunoassay method. Computational fluid modeling was performed on the chamber design. Results Under hypoxic culture conditions (7% O2), basal vascular endothelial growth factor (VEGF) secretion by polarized RPE cells increased significantly from 1.40 to 1.68 ng/mL over the first 2 hours (P < 0.0013) and remained stably elevated through 4 hours. Conversely, VEGF secretion from the apical side remained constant under the same hypoxic conditions. Conclusions The Puck can be used to measure spatiotemporal protein secretion by polarized cells into apical and basal microniches in response to environmental conditions. Computational model results support the absence of biologically significant shear stress to the cells caused by the device. Translational Relevance The Puck can be used validate the mature phenotypic health of autologous induced pluripotent stem cells (iPSC)-derived RPE cells prior to transplantation.
Collapse
Affiliation(s)
- Eric C. Spivey
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jinggang Yin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward Chaum
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P. Wikswo
- Department of Molecular Physiology and Biophysics, Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Bruno S, Herrera Sanchez MB, Chiabotto G, Fonsato V, Navarro-Tableros V, Pasquino C, Tapparo M, Camussi G. Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Front Cell Dev Biol 2021; 9:644088. [PMID: 33981703 PMCID: PMC8107725 DOI: 10.3389/fcell.2021.644088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Human liver stem cells (HLSCs) were described for the first time in 2006 as a new stem cell population derived from healthy human livers. Like mesenchymal stromal cells, HLSCs exhibit multipotent and immunomodulatory properties. HLSCs can differentiate into several lineages under defined in vitro conditions, such as mature hepatocytes, osteocytes, endothelial cells, and islet-like cell organoids. Over the years, HLSCs have been shown to contribute to tissue repair and regeneration in different in vivo models, leading to more than five granted patents and over 15 peer reviewed scientific articles elucidating their potential therapeutic role in various experimental pathologies. In addition, HLSCs have recently completed a Phase 1 study evaluating their safety post intrahepatic injection in infants with inherited neonatal onset hyperammonemia. Even though a lot of progress has been made in understanding HLSCs over the past years, some important questions regarding the mechanisms of action remain to be elucidated. Among the mechanisms of interaction of HLSCs with their environment, a paracrine interface has emerged involving extracellular vesicles (EVs) as vehicles for transferring active biological materials. In our group, the EVs derived from HLSCs have been studied in vitro as well as in vivo. Our attention has mainly been focused on understanding the in vivo ability of HLSC–derived EVs as modulators of tissue regeneration, inflammation, fibrosis, and tumor growth. This review article aims to discuss in detail the role of HLSCs and HLSC-EVs in these processes and their possible future therapeutic applications.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Victor Navarro-Tableros
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
4
|
Rapid liquid chromatography-mass spectrometry quantitation of glucose-regulating hormones from human islets of Langerhans. J Chromatogr A 2020; 1637:461805. [PMID: 33360778 DOI: 10.1016/j.chroma.2020.461805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained through the secretion of peptide hormones, such as insulin, somatostatin, and glucagon, from islets of Langerhans, clusters of endocrine cells found in the pancreas. This report describes an LC-MS method using multiple reaction monitoring for quantitation of insulin, C-peptide, glucagon, and somatostatin secretion from human islet populations. For rapid analysis, a 5 min separation was achieved using a 2.1 × 30 mm (i.d. x length) C18 column with 2.7 µm diameter core shell particles. A sacrificial protein hydrolysate was used with the sample and found to improve signal magnitude, repeatability, and to reduce carryover between runs. At optimized gradient conditions, the gradient run time was 4.55 min producing an average peak width of 0.3 min, a minimum resolution of 1.2, and a peak capacity of 20. As a proof of concept, the method was used to measure secretions from static incubations of human islets from 2 donors. Insulin and C-peptide were quantified and matched well with literature values of these hormones. We expect that this antibody-free quantitation of multiple hormones secreted from islets will provide insights into the temporal relationships of these peptides in the future.
Collapse
|
5
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|