1
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Development of eugenol-fortified fisetin-loaded nano-invasomes gel. Xenobiotica 2025:1-10. [PMID: 40078049 DOI: 10.1080/00498254.2025.2478928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The goal of current investigation was to develop eugenol-fortified fisetin nano-invasomes. Fisetin-loaded invasomes were prepared using thin film hydration procedure and evaluated for various parameters. Additionally, the optimised fisetin invasomes formulation (F5) was converted to fisetin invasomes gel using Carbopol® as gelling agent and evaluated for pH, spreadability, homogeneity, drug content, in vitro fisetin release, antioxidant activity and stability study.Prepared optimised fisetin invasomes formulation (F5) demonstrated vesicles size, PDI, zeta potential and entrapment efficiency of 153.85 ± 14.32 nm, 0.208 ± 0.042, -12.67 ± 1.08 mV and 72.10 ± 6.36%. The TEM image indicated that the prepared invasomes vesicles are intact, spherical and found in the range of nanosized scale. Prepared fisetin invasomes gel showed better spreadability and in vitro fisetin released in contrast to fisetin control gel. Substantial improvement in the DPPH radical scavenging activity of fisetin invasomes gel 44.70% (3.1 µM) and 83.94% (50 µM), was noted as compared to the control gel at 39.47% (3.1 µM) and 79.10% at (50 µM). The prepared fisetin invasomes gel formulation was found stable at 4 °C.Based on the results, prepared invasomes gel formulation was found as a viable method for better delivery of bioactive compound(s) including fisetin.
Collapse
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Dwivedi R, Bala R, Madaan R, Singh S, Sindhu RK. Terpene-based novel invasomes: pioneering cancer treatment strategies in traditional medicine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025; 22:1-14. [PMID: 38996385 DOI: 10.1515/jcim-2024-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Health care workers have faced a significant challenge because of the rise in cancer incidence around the world during the past 10 years. Among various forms of malignancy skin cancer is most common, so there is need for the creation of an efficient and safe skin cancer treatment that may offer targeted and site-specific tumor penetration, and reduce unintended systemic toxicity. Nanocarriers have thus been employed to get around the issues with traditional anti-cancer drug delivery methods. Invasomes are lipid-based nanovesicles having small amounts of terpenes and ethanol or a mixture of terpenes and penetrate the skin more effectively. Compared to other lipid nanocarriers, invasomes penetrate the skin at a substantially faster rate. Invasomes possess a number of advantages, including improved drug effectiveness, higher compliance, patient convenience, advanced design, multifunctionality, enhanced targeting capabilities, non-invasive delivery methods, potential for combination therapies, and ability to overcome biological barriers,. These attributes position invasomes as a promising and innovative platform for the future of cancer treatment. The current review provides insights into invasomes, with a fresh organizational scheme and incorporates the most recent cancer research, including their composition, historical development and methods of preparation, the penetration mechanism involving effect of various formulation variables and analysis of anticancer mechanism and the application of invasomes.
Collapse
Affiliation(s)
- Renu Dwivedi
- School of Pharmaceutical Sciences, Bahra University, Solan, Himachal Pradesh, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rakesh K Sindhu
- School of Pharmacy, 193167 Sharda University , Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Hulme J. Harnessing Ultrasonic Technologies to Treat Staphylococcus Aureus Skin Infections. Molecules 2025; 30:512. [PMID: 39942617 PMCID: PMC11819699 DOI: 10.3390/molecules30030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The rise of antibiotic-resistant Staphylococcus aureus strains, particularly MRSA, complicates the management of skin and soft tissue infections. This review highlights ultrasonic methodologies as adjunctive therapies to combat S. aureus-driven skin infections and prevent progression to biofilm formation and chronic wounds. Low- and high-frequency ultrasound (LFU and HFU) demonstrate potential in disrupting biofilms, enhancing drug delivery, and promoting tissue repair through cavitation and microbubble activity. These approaches integrate ultrasonic frequencies with microbubbles and therapeutics, such as antibiotics and affimers, to minimize resistance and improve healing. Tailoring the bioeffects of ultrasound on skin structures through localized delivery technologies, including microneedle patches and piezoelectric systems, presents promising solutions for early intervention in skin and soft structure infections (SSSIs).
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
4
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
5
|
Samir B, El-Kamel A, Zahran N, Heikal L. Resveratrol-loaded invasome gel: A promising nanoformulation for treatment of skin cancer. Drug Deliv Transl Res 2024; 14:3354-3370. [PMID: 38361173 PMCID: PMC11499415 DOI: 10.1007/s13346-024-01534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Skin cancer is a widespread type of cancer representing 30% of all cancer types worldwide. Resveratrol (RSV) is an anticancer drug used for skin cancer treatment. Several limitations of RSV such as poor aqueous solubility, first-pass metabolism, and instability limit their topical use. The study aimed to develop and optimize RSV-loaded invasomes for topical administration as well as assess their efficacy in vivo. The optimized RSV-loaded invasomes showed small particle size (208.7 ± 74 nm), PDI (0.3 ± 0.03), high % entrapment efficiency (77.7 ± 6%), and negative zeta potential (-70.4 ± 10.9 mV). They showed an initial burst effect followed by controlled drug release for 24 h. RSV-loaded invasomal gel revealed the highest skin deposition percentage (65%) in ex vivo rat skin, the highest potency (low IC50 of 6.34 μg/mL), and the highest cellular uptake when tested on squamous cancerous cells (SCCs) when compared to other formulations. The antitumor effect of topical RSV-loaded invasomes was also evaluated in vivo in Ehrlich-induced mice models. The results revealed that RSV-loaded invasomal gel exhibited the smallest tumor volume with no signs of organ toxicity indicating its safety in skin cancer treatment. Upregulation of BAX and Caspase-3 gene levels and downregulation of NF-kB and BCL2 protein levels were demonstrated using RT-PCR and ELISA tests, respectively. Interestingly, the present study is the first to develop RSV-loaded invasomal gel for topical skin cancer treatment. According to our results, invasomes are considered promising lipid-based nanosystems for topical RSV delivery having high skin penetration ability and anticancer effect in the treatment of skin carcinoma.
Collapse
Affiliation(s)
- Bassant Samir
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt
| | - Amal El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt
| | - Noha Zahran
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt.
| |
Collapse
|
6
|
Leichtle A, Lupatsii M, Graspeuntner S, Jeschke S, Penxová Z, Kurabi A, Ryan AF, Rupp J, Pries R, Bruchhage KL. Anti-inflammatory response to 1,8-Cineol and associated microbial communities in Otitis media patients. Sci Rep 2024; 14:16362. [PMID: 39014066 PMCID: PMC11252366 DOI: 10.1038/s41598-024-67498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Chronic Otitis Media (COM) is defined as long term inflammation and colonization with pathogenic bacteria due to a defect or retraction of the tympanic membrane. Surgical interventions are often augmented by antibiotic resistance development and therefore, off-label treatment using the natural drug 1,8-Cineol was carried out. All COM patients underwent antibiotic therapy and middle ear surgery and developed antibiotic resistances. Microbiological investigations from the auditory canal and stool samples were performed in correlation with the clinical course. Therapy of COM patients with 1,8-Cineol revealed a clear reduction of inflammatory microbes P. aeruginosa and Proteus mirabilis in ear samples as well as intestinal Prevotella copri, which was associated with an improved clinical outcome in certain individuals. The present off-label study revealed manifold anti-inflammatory effects of the natural monoterpene 1,8-Cineol in Otitis media patients. A better understanding of the underlying mechanisms will improve the current treatment options and possible forms of application of this natural drug.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Zuzana Penxová
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Arwa Kurabi
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Allen Frederic Ryan
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | | |
Collapse
|
7
|
Khodayari P, Ebrahimzadeh H. A green QuEChERS syringe filter based micro-solid phase extraction using hydrophobic natural deep eutectic solvent as immobilized sorbent for simultaneous analysis of five anti-diabetic drugs by HPLC-UV. Anal Chim Acta 2023; 1279:341765. [PMID: 37827666 DOI: 10.1016/j.aca.2023.341765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Here, it has been discussed about creating a specific and sustainable analytical technique for monitoring anti-diabetic drugs in order to accurately determine the dosage in patients and reduce side effects, remove them from wastewater (as emerging contaminants), and ultimately abate pharmaceutical pollutants in the environment. RESULTS In this research, a green and reproducible Quick Easy Cheap Effective Rugged Safe (QuEChERS) method based on syringe filter based micro-solid phase extraction (SF-μSPE) coupled with HPLC-UV using a green sorbent was developed and optimized for the extraction of five anti-diabetic drugs from wastewater, serum, and plasma real samples. A novel green sorbent composed of a liquid mixture of thymol: menthol ([Thy]:[Men], 1:1) hydrophobic natural deep eutectic solvent (HNADES) and curcumin (Cur) immobilized into the non-toxic and biodegradable polyvinyl alcohol (PVA) electrospun nanofibers' mat was synthesized simply via cheap equipment. Cur was added to enhance the hydrophobicity and functionality of the sorbent. The immobilization process was performed by soaking the mat in the liquid mixture for a specific duration. The correct synthesis and experimental molar ratio of the HNADES components were confirmed by ATR-FTIR and NMR (1H and 13C) spectroscopy. The prepared green sorbent (Cur-HNADES/PVA) was characterized using ATR-FTIR, FE-SEM, EDX/EDX mapping analysis, and water contact angle (WCA) measurement, and it exhibited satisfactory adsorption capacity for the target analytes. SIGNIFICANCE Under optimal conditions (pH = 6.0, adsorption cycle = 3, sample volume = 5.0 mL, desorption cycle = 1, type and volume of elution = 80:20 %v/v MeOH/ACN and 500.0 μL), the method was validated in terms of specificity, linear dynamic ranges (LDRs = 0.1-2000.0 μg L-1 and 0.1-1800.0 μg L-1), limits of detection (LODs = 0.03-0.09 μg L-1), and precision (within-day RSDs% = 0.32-1.45% and between-day RSDs% = 0.59-2.03%). Evaluation of the greenness aspects of the proposed method was accomplished using the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) approaches. It is noteworthy that the conducted research represents the first report of the synthesis and application of this novel and green sorbent for the determination of anti-diabetic drugs in the mentioned real samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
8
|
Pries R, Jeschke S, Leichtle A, Bruchhage KL. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites 2023; 13:751. [PMID: 37367909 DOI: 10.3390/metabo13060751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The monoterpene 1,8-Cineol is a natural plant-based therapeutic agent that is commonly applied to treat different inflammatory diseases due to its mucolytic, anti-microbial and anti-inflammatory properties. It has become increasingly clear in the recent years that 1,8-Cineol spreads almost everywhere in the human body after its oral administration, from the gut to the blood to the brain. Its anti-microbial potential and even its anti-viral effects have been observed to include numerous bacteria and fungi species. Many recent studies help to better understand the cellular and molecular immunological consequences of 1,8-Cineol treatment in inflammatory diseases and further provide information concerning the mechanistic modes of action in the regulation of distinct inflammatory biosynthetic pathways. This review aims to present a holistic and understandable overview of the different aspects of 1,8-Cineol in infections and inflammation.
Collapse
Affiliation(s)
- Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | | |
Collapse
|
9
|
Diogo P, Amparo F Faustino M, Palma PJ, Rai A, Graça P M S Neves M, Miguel Santos J. May carriers at nanoscale improve the Endodontic's future? Adv Drug Deliv Rev 2023; 195:114731. [PMID: 36787865 DOI: 10.1016/j.addr.2023.114731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Nanocarriers (NCs) are dynamic nanovehicles used to transport bioactive derivatives like therapeutical formulations, drugs and/or dyes. The current review assists in understanding the mechanism of action of several recent developed NCs with antimicrobial purposes. Here, nine NCs varieties are portrayed with focus on nineteen approaches that are fulfil described based on outcomes obtained from in vitro antimicrobial assays. All approaches have previously been verified and we underline the biochemical challenges of all NCs, expecting that the present data may encourage the application of NCs in endodontic antimicrobial basic research. Methodological limitations and the evident base gaps made not possible to draw a definite conclusion about the best NCs for achieving efficient antimicrobial outcomes in endodontic studies. Due to the lack of pre-clinical trials and the scarce number of clinical trials in this emergent area, there is still much room for improvement on several fronts.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Akhilesh Rai
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | | | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine and Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Dylenova EP, Zhigzhitzhapova SV, Emelyanova EA, Tykheev ZA, Chimitov DG, Goncharova DB, Taraskin VV. Chemical Diversity of Artemisia rutifolia Essential Oil, Antimicrobial and Antiradical Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1289. [PMID: 36986977 PMCID: PMC10054867 DOI: 10.3390/plants12061289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
This paper presents the results of the study of the composition of the essential oil (EO) of Artemisia rutifolia by the GC/MS method as well as its antimicrobial and antiradical activities. According to the PCA-analysis, these EOs can be conditionally divided into "Tajik" and "Buryat-Mongol" chemotypes. The first chemotype is characterized by the prevalence of α- and β-thujone, and the second chemotype by the prevalence of 4-phenyl-2-butanone, camphor. The greatest antimicrobial activity of A. rutifolia EO was observed against Gram-positive bacteria and fungi. The EO showed high antiradical activity with an IC50 value of 17.55 μL/mL. The presented first data on the composition and activity of the EO of A. rutifolia of the Russian flora indicate the prospects of the species as a raw material for the pharmaceutical and cosmetic industry.
Collapse
Affiliation(s)
- Elena P. Dylenova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (E.P.D.); (S.V.Z.); (E.A.E.); (D.B.G.); (V.V.T.)
| | - Svetlana V. Zhigzhitzhapova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (E.P.D.); (S.V.Z.); (E.A.E.); (D.B.G.); (V.V.T.)
| | - Elena A. Emelyanova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (E.P.D.); (S.V.Z.); (E.A.E.); (D.B.G.); (V.V.T.)
| | - Zhargal A. Tykheev
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (E.P.D.); (S.V.Z.); (E.A.E.); (D.B.G.); (V.V.T.)
| | - Daba G. Chimitov
- Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia;
| | - Danaya B. Goncharova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (E.P.D.); (S.V.Z.); (E.A.E.); (D.B.G.); (V.V.T.)
| | - Vasiliy V. Taraskin
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (E.P.D.); (S.V.Z.); (E.A.E.); (D.B.G.); (V.V.T.)
| |
Collapse
|
11
|
Kumar B, Pandey M, Aggarwal R, Sahoo PK. A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Transdermal drug delivery is one of the most widely used drug administration routes, which offer several advantages over other routes of drug delivery. The apical layer of the skin called the stratum corneum is the most dominant obstacle in the transdermal drug delivery, which restricts the passage of drugs across the skin. Considerable strategies have been applied to enhance the rate of permeation across the epithelial cells; however, the most widely used strategy is the use of sorption boosters, also known as permeation enhancers.
Main body
Terpenes were considered as efficient skin permeation enhancers and are generally recognized as safe as per Food and Drug Administration. Terpenes improve the permeability of drugs either by destructing the stratum corneum’s tightly packed lipid framework, excessive diffusivity of drug in cell membrane or by rampant drug partitioning into epithelial cells. Various vesicular systems have been developed and utilized for the transdermal delivery of many drugs. Invasomes are one such novel vesicular system developed which are composed of phospholipids, ethanol and terpenes. The combined presence of ethanol and terpenes provides exceptional flexibility to the vesicles and improves the permeation across the barrier offered due to the stratum corneum as both ethanol and terpenes act as permeation enhancers. Therefore, utilization of invasomes as carriers to facilitate higher rate of drug permeation through the skin can be a very useful approach to improve transdermal drug delivery of a drug.
Conclusion
The paper focuses on a broad updated view of terpenes as effective permeation enhancers and invasomes along with their applications in the pharmaceutical formulations.
Collapse
|
12
|
Safta DA, Bogdan C, Moldovan ML. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022; 14:pharmaceutics14050991. [PMID: 35631577 PMCID: PMC9147886 DOI: 10.3390/pharmaceutics14050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
The need to develop wound healing preparations is a pressing challenge given the limitations of the current treatment and the rising prevalence of impaired healing wounds. Although herbal extracts have been used for many years to treat skin disorders, due to their wound healing, anti-inflammatory, antimicrobial, and antioxidant effects, their efficacy can be questionable because of their poor bioavailability and stability issues. Nanotechnology offers an opportunity to revolutionize wound healing therapies by including herbal compounds in nanosystems. Particularly, vesicular nanosystems exhibit beneficial properties, such as biocompatibility, targeted and sustained delivery capacity, and increased phytocompounds’ bioavailability and protection, conferring them a great potential for future applications in wound care. This review summarizes the beneficial effects of phytocompounds in wound healing and emphasizes the advantages of their entrapment in vesicular nanosystems. Different types of lipid nanocarriers are presented (liposomes, niosomes, transferosomes, ethosomes, cubosomes, and their derivates’ systems), highlighting their applications as carriers for phytocompounds in wound care, with the presentation of the state-of-art in this field. The methods of preparation, characterization, and evaluation are also described, underlining the properties that ensure good in vitro and in vivo performance. Finally, future directions of topical systems in which vesicle-bearing herbal extracts or phytocompounds can be incorporated are pointed out, as their development is emerging as a promising strategy.
Collapse
|
13
|
Wongchompoo W, Buntem R. Microencapsulation of camphor using trimethylsilylcellulose. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
14
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
15
|
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9:microorganisms9102041. [PMID: 34683362 PMCID: PMC8541629 DOI: 10.3390/microorganisms9102041] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence of drug- resistant pathogens raises an urgent need to identify and isolate new bioactive compounds from medicinal plants using standardized modern analytical procedures. Medicinal plant-derived compounds could provide novel straightforward approaches against pathogenic bacteria. This review explores the antimicrobial activity of plant-derived components, their possible mechanisms of action, as well as their chemical potential. The focus is put on the current challenges and future perspectives surrounding medicinal plants antimicrobial activity. There are some inherent challenges regarding medicinal plant extracts and their antimicrobial efficacy. Appropriate and optimized extraction methodology plant species dependent leads to upgraded and selective extracted compounds. Antimicrobial susceptibility tests for the determination of the antimicrobial activity of plant extracts may show variations in obtained results. Moreover, there are several difficulties and problems that need to be overcome for the development of new antimicrobials from plant extracts, while efforts have been made to enhance the antimicrobial activity of chemical compounds. Research on the mechanisms of action, interplay with other substances, and the pharmacokinetic and/or pharmacodynamic profile of the medicinal plant extracts should be given high priority to characterize them as potential antimicrobial agents.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); (E.S.)
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 1011 Lausanne, Switzerland
- Correspondence: (N.V.); (E.S.)
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece;
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
16
|
Pharmacological Studies on Traditional Plant-Based Remedies. Biomedicines 2021; 9:biomedicines9030315. [PMID: 33808651 PMCID: PMC8003496 DOI: 10.3390/biomedicines9030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
For years, plant-based remedies have been used as a traditional practice to treat and prevent a broad range of diseases [...].
Collapse
|
17
|
Lasoń E. Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Systems. Molecules 2020; 25:molecules25235758. [PMID: 33297317 PMCID: PMC7730254 DOI: 10.3390/molecules25235758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Terpenes are a group of phytocompounds that have been used in medicine for decades owing to their significant role in human health. So far, they have been examined for therapeutic purposes as antibacterial, anti-inflammatory, antitumoral agents, and the clinical potential of this class of compounds has been increasing continuously as a source of pharmacologically interesting agents also in relation to topical administration. Major difficulties in achieving sustained delivery of terpenes to the skin are connected with their low solubility and stability, as well as poor cell penetration. In order to overcome these disadvantages, new delivery technologies based on nanostructures are proposed to improve bioavailability and allow controlled release. This review highlights the potential properties of terpenes loaded in several types of lipid-based nanocarriers (liposomes, solid lipid nanoparticles, and nanostructured lipid carriers) used to overcome free terpenes' form limitations and potentiate their therapeutic properties for topical administration.
Collapse
Affiliation(s)
- Elwira Lasoń
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska St 24, 31-155 Kraków, Poland
| |
Collapse
|