1
|
Hajheidari N, Lorigooini Z, Mohseni R, Amini-Khoei H. Umbelliprenin attenuates comorbid behavioral disorders in acetic acid-induced colitis in mice: mechanistic insights into hippocampal oxidative stress and neuroinflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2039-2051. [PMID: 39230587 DOI: 10.1007/s00210-024-03416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Inflammatory bowel disease (IBD) is often accompanied by psychiatric disorders. Emerging evidence suggests that neuroinflammation and oxidative stress contribute to the psychiatric symptoms associated with IBD. Umbelliprenin (UMB) possesses several pharmacological properties, including anti-inflammatory and antioxidant effects. This study aimed to investigate the protective effects of UMB on comorbid behavioral disorders in a mouse model of experimental colitis, focusing on its potential anti-neuroinflammatory and antioxidant activities. After inducing colitis with acetic acid, male NMRI mice were treated for 7 consecutive days with UMB, saline, or dexamethasone. Behavioral assessments included the forced swimming test (FST), splash test, open field test (OFT), and elevated plus maze (EPM). Histopathological changes in the colon were evaluated, and total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and the expression of inflammatory genes (TNFα, IL1β, and TLR4) were measured in the hippocampus. Colitis was associated with increased immobility time in the FST, reduced entries and time spent in the open arms of the EPM, decreased grooming behavior in the splash test, and reduced time spent in the central zone of the OFT. Colitis also resulted in a reduction in TAC and an increase in MDA levels and inflammatory gene expression in the hippocampus. UMB treatment mitigated the behavioral disorders associated with colitis, reduced neuroinflammation and oxidative stress in the hippocampus, and alleviated histopathological alterations in the colon. In conclusion, UMB may reduce behavioral disorders induced by colitis by decreasing oxidative stress and neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Negar Hajheidari
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Shahbaz M, Perween A, Momal U, Imran M, Ul Hassan MH, Naeem H, Mujtaba A, Hussain M, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, El‐Ghorab AH, Selim S, Mostafa EM, Al Jbawi E. Recent Perspectives on Anticancer Potential of Coumarin Against Different Human Malignancies: An Updated Review. Food Sci Nutr 2025; 13:e4696. [PMID: 39803273 PMCID: PMC11717051 DOI: 10.1002/fsn3.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing. One of the main anticancer mechanisms of coumarin act is killing cancer cells through apoptosis. This includes changes to pro- and anti-apoptotic proteins like Bcl-2 and Bax, the release of cytochrome c from mitochondria, and the activation of caspases. The tumor suppressor protein p53's expression has been discovered to be upregulated by coumarins such as esculetin and imperatorin, which encourage interrupted cell cycle and death. Additionally, coumarin has anti-angiogenic qualities, which are critical for the development and spread of tumors. It can slow the development of new blood vessels that feed tumors by inhibiting the "vascular endothelial growth factor (VEGF)" route of signaling. Coumarins inhibit the number of signaling pathways that are vital for cell division. For example, they can suppress the "PI3K/mTOR" pathway, which usually impairs the cancer cells and results in decreased cell viability and growth. Finally, coumarins could modulate the response of the immune system to cancerous cells. They have the ability to boost the activity of natural killer cells and cytotoxic T lymphocytes, which aid the immune system in identifying and eliminating cancer cells. Through a variety of mechanisms, such as immune response regulation, angiogenesis reduction, cell growth inhibition, and apoptosis activation, coumarins exhibit their anticancer effects. These molecular pathways demonstrate coumarins' potential as an interesting option for the development of novel anticancer treatments. More studies are needed to completely understand their modes of action and maximize their therapeutic efficacy.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
| | - Asfa Perween
- Department of Human Nutrition and DieteticsMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
| | - Ushna Momal
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarrowalNarrowalPakistan
| | - Muhammad Hammad Ul Hassan
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
- Post Harvest Research CentreAyub Agricultural Research Institute FaisalabadFaisalabadPakistan
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
3
|
Shakiba M, Rassouli FB. Joining up the scattered anticancer knowledge on auraptene and umbelliprenin: a meta-analysis. Sci Rep 2024; 14:11770. [PMID: 38783034 PMCID: PMC11116445 DOI: 10.1038/s41598-024-62747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Auraptene (AUR) and umbelliprenin (UMB) are naturally occurring prenylated coumarins that have demonstrated promising anticancer effects across various human cancer cell lines. This meta-analysis aimed to systematically assess, compare, and quantify the anticancer efficacy of AUR and UMB by synthesizing evidence from in vitro studies. A comprehensive literature search identified 27 eligible studies investigating AUR or UMB against cancer cells. Mixed-effects models revealed significant negative associations between coumarin dose and viability for AUR (est. = - 2.27) and UMB (est. = - 3.990), underscoring their dose-dependent cytotoxicity. Meta-regression indicated slightly higher potency for UMB over AUR, potentially due to increased lipophilicity imparted by additional isoprenyl units. Machine learning approaches identified coumarin dose and cancer type as the most influential determinants of toxicity, while treatment duration and the specific coumarin displayed weaker effects. Moderate (AUR) to substantial (UMB) between-study heterogeneity was detected, although the findings proved robust. In summary, this meta-analysis establishes AUR and UMB as promising natural anticancer candidates with clear dose-toxicity relationships across diverse malignancies. The structural insights and quantifications of anticancer efficacy can inform forthcoming efforts assessing therapeutic potential in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran.
| |
Collapse
|
4
|
Iranpanah A, Fakhri S, Bahrami G, Majnooni MB, Gravandi MM, Taghavi S, Badrbani MA, Amirian R, Farzaei MH. Protective effect of a hydromethanolic extract from Fraxinus excelsior L. bark against a rat model of aluminum chloride-induced Alzheimer's disease: Relevance to its anti-inflammatory and antioxidant effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117708. [PMID: 38181932 DOI: 10.1016/j.jep.2024.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Bagher Majnooni
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sara Taghavi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Dastaviz F, Vahidi A, Khosravi T, Khosravi A, Sheikh Arabi M, Bagheri A, Rashidi M, Oladnabi M. Impact of umbelliprenin-containing niosome nanoparticles on VEGF-A and CTGF genes expression in retinal pigment epithelium cells. Int J Ophthalmol 2024; 17:7-15. [PMID: 38239942 PMCID: PMC10754669 DOI: 10.18240/ijo.2024.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/14/2023] [Indexed: 01/22/2024] Open
Abstract
AIM To investigate the impact of niosome nanoparticles carrying umbelliprenin (UMB), an anti-angiogenic and anti-inflammatory plant compound, on the expression of vascular endothelial growth factor (VEGF-A) and connective tissue growth factor (CTGF) genes in a human retinal pigment epithelium (RPE)-like retina-derived cell line. METHODS UMB-containing niosomes were created, optimized, and characterized. RPE-like cells were treated with free UMB and UMB-containing niosomes. The IC50 values of the treatments were determined using an MTT assay. Gene expression of VEGF-A and CTGF was evaluated using real-time polymerase chain reaction after RNA extraction and cDNA synthesis. Niosomes' characteristics, including drug entrapment efficiency, size, dispersion index, and zeta potential were assessed. Free UMB had an IC50 of 96.2 µg/mL, while UMB-containing niosomes had an IC50 of 25 µg/mL. RESULTS Treatment with UMB-containing niosomes and free UMB resulted in a significant reduction in VEGF-A expression compared to control cells (P=0.001). Additionally, UMB-containing niosomes demonstrated a significant reduction in CTGF expression compared to control cells (P=0.05). However, there was no significant reduction in the expression of both genes in cells treated with free UMB. CONCLUSION Both free UMB and niosome-encapsulated UMB inhibits VEGF-A and CTGF genes expression. However, the latter demonstrates significantly greater efficacy, potentially due to the lower UMB dosage and gradual delivery. These findings have implications for anti-angiogenesis therapeutic approaches targeting age-related macular degeneration.
Collapse
Affiliation(s)
- Farzad Dastaviz
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
| | - Akram Vahidi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
| | - Teymoor Khosravi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
| | - Mehdi Sheikh Arabi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4847191628, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4847191628, Iran
| | - Morteza Oladnabi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
- Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan 4934174516, Iran
| |
Collapse
|
6
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Sadeghzadeh F, Motavalizadehkakhky A, Mehrzad J, Zhiani R, Homayouni Tabrizi M. Folic acid Conjugated-Chitosan Modified nanostructured lipid carriers as promising carriers for delivery of Umbelliprenin to cancer cells: In vivo and In vitro. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Synthesis of Coumarin Derivatives: A New Class of Coumarin-Based G Protein-Coupled Receptor Activators and Inhibitors. Polymers (Basel) 2022; 14:polym14102021. [PMID: 35631901 PMCID: PMC9147790 DOI: 10.3390/polym14102021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
To expand the range of daphnetin-based inhibitors/activators used for targeting G protein-coupled receptors (GPCRs) in disease treatment, twenty-five coumarin derivatives 1–25, including 7,8-dihydroxycoumarin and 7-hydroxycoumarin derivatives with various substitution patterns/groups at C3-/4- positions, were synthesized via mild Pechmann condensation and hydroxyl modification. The structures were characterized by 1H NMR, 13C NMR and ESI-MS. Their inhibition or activation activities relative to GPCRs were evaluated by double-antibody sandwich ELISA (DAS–ELISA) in vitro. The results showed that most of the coumarin derivatives possessed a moderate GPCR activation or inhibitory potency. Among them, derivatives 14, 17, 18, and 21 showed a remarkable GPCR activation potency, with EC50 values of 0.03, 0.03, 0.03, and 0.02 nM, respectively. Meanwhile, derivatives 4, 7, and 23 had significant GPCR inhibitory potencies against GPCRs with IC50 values of 0.15, 0.02, and 0.76 nM, respectively. Notably, the acylation of hydroxyl groups at the C-7 and C-8 positions of 7,8-dihydroxycoumarin skeleton or the etherification of the hydroxyl group at the C-7 position of the 7-hydroxycoumarin skeleton could successfully change GPCRs activators into inhibitors. This work demonstrated a simple and efficient approach to developing coumarin derivatives as remarkable GPCRs activators and inhibitors via molecular diversity-based synthesis.
Collapse
|
9
|
Pan Y, Liu T, Wang X, Sun J. Research progress of coumarins and their derivatives in the treatment of diabetes. J Enzyme Inhib Med Chem 2022; 37:616-628. [PMID: 35067136 PMCID: PMC8788346 DOI: 10.1080/14756366.2021.2024526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.
Collapse
Affiliation(s)
- Yinbo Pan
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
10
|
Bahrami M, Haji Molla Hoseini M, Rezaei M, Ziai SA. Umbelliprenin Increases the M1/M2 Ratio of Macrophage Polarization and Improves the M1 Macrophage Activity in THP-1 Cells Cocultured with AGS Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9927747. [PMID: 34335844 PMCID: PMC8294985 DOI: 10.1155/2021/9927747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastric adenocarcinoma is the fifth most diagnosed malignancy in the world. The immune system consists of a heterogeneous mixture of macrophages that defense the body through phagocytosis and the production of different cytokines and chemokines. Tumors cause macrophages to polarize differently in the manner of their favorite growth and angiogenesis. Umbelliprenin, a natural sesquiterpene coumarin, has been shown to have anticancer properties against some tumors, including gastric adenocarcinoma. The aim of our study was to investigate the effect of umbelliprenin on the polarization of macrophages in addition to the measurement of some of the soluble factors they produce. METHOD The values of IC5 and IC50 for umbelliprenin in the AGS and THP-1 cells were estimated using the MTT assay. THP-1 cells were treated with 10 μM umbelliprenin, either alone or cocultured with AGS cells. Flow cytometry analysis of treated THP-1 cells was performed for CD68, CD86, and CD206 markers to evaluate M0, M1, and M2 macrophages polarization, respectively. AGS cells were assessed for apoptosis and necrosis by flow cytometry after labeling with Annexin V-FITC and propidium iodide. Interleukin- (IL-) 10 and IL-12 contents were measured in the supernatant by the ELISA method. Griess Reaction assay technique was used to determine nitric oxide (NO) concentration. RESULTS The results of the MTT showed lower toxicity of umbelliprenin in THP-1 (IC50 = 75.79) compared to the AGS cell line (IC50 = 48.81). Umbelliprenin significantly increased the M1/M2 ratio. IL-10 content decreased significantly in the supernatant of M1 and M2 cells after umbelliprenin treatment, while IL-12 increased in the supernatant of M1 cells and decreased in the supernatant of the M2 cells. Umbelliprenin caused an increase in the NO in the supernatant of the M1 cells. CONCLUSION Umbelliprenin alters the macrophage's secretions and its phenotypes in favor of tumor suppression.
Collapse
Affiliation(s)
- MohammadTaher Bahrami
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Rezaei
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, Kashani SH, Hushmandi K, Najafi M, Zarrabi A, Ahn KS, Khan H. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci 2021; 270:119006. [PMID: 33421521 DOI: 10.1016/j.lfs.2020.119006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Uncontrolled growth and metastasis of cancer cells is an increasing challenge for overcoming cancer, and improving survival of patients. Complicated signaling networks account for proliferation and invasion of cancer cells that need to be elucidated for providing effective cancer therapy, and minimizing their malignancy. Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 200 nucleotides. They participate in cellular events, and their dysregulation in a common phenomenon in different cancers. Noteworthy, lncRNAs can regulate different molecular pathways, and signal transducer and activator of transcription 3 (STAT3) is one of them. STAT3 is a tumor-promoting factors in cancers due to its role in cancer proliferation (cell cycle progression and apoptosis inhibition) and metastasis (EMT induction). LncRNAs can function as upstream mediators of STAT3 pathway, reducing/enhancing its expression. This dual relationship is of importance in affecting proliferation and metastasis of cancer cells. The response of cancer cells to therapy such as chemotherapy and radiotherapy is regulated by lncRNA/STAT3 axis. Tumor-promoting lncRNAs including NEAT1, SNHG3 and H19 induces STAT3 expression, while tumor-suppressing lncRNAs such as MEG3, PTCSC3 and NKILA down-regulate STAT3 expression. Noteworthy, upstream mediators of STAT3 such as microRNAs can be regulated by lncRNAs. These complicated signaling networks are mechanistically described in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
12
|
Miski M. Next Chapter in the Legend of Silphion: Preliminary Morphological, Chemical, Biological and Pharmacological Evaluations, Initial Conservation Studies, and Reassessment of the Regional Extinction Event. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010102. [PMID: 33418989 PMCID: PMC7825337 DOI: 10.3390/plants10010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Silphion was an ancient medicinal gum-resin; most likely obtained from a Ferula species growing in the Cyrene region of Libya ca. 2500 years ago. Due to its therapeutic properties and culinary value, silphion became the main economic commodity of the Cyrene region. It is generally believed that the source of silphion became extinct in the first century AD. However, there are a few references in the literature about the cultivated silphion plant and its existence up to the fifth century. Recently, a rare and endemic Ferula species that produces a pleasant-smelling gum-resin was found in three locations near formerly Greek villages in Anatolia. Morphologic features of this species closely resemble silphion, as it appears in the numismatic figures of antique Cyrenaic coins, and conform to descriptions by ancient authors. Initial chemical and pharmacological investigations of this species have confirmed the medicinal and spice-like quality of its gum-resin supporting a connection with the long-lost silphion. A preliminary conservation study has been initiated at the growth site of this rare endemic Ferula species. The results of this study and their implications on the regional extinction event, and future development of this species will be discussed.
Collapse
Affiliation(s)
- Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
13
|
Deryabin D, Inchagova K, Rusakova E, Duskaev G. Coumarin's Anti-Quorum Sensing Activity Can Be Enhanced When Combined with Other Plant-Derived Small Molecules. Molecules 2021; 26:E208. [PMID: 33401594 PMCID: PMC7795503 DOI: 10.3390/molecules26010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022] Open
Abstract
Coumarins are class of natural aromatic compounds based on benzopyrones (2H-1-benzopyran-2-ones). They are identified as secondary metabolites in about 150 different plant species. The ability of coumarins to inhibit cell-to-cell communication in bacterial communities (quorum sensing; QS) has been previously described. Coumarin and its derivatives in plant extracts are often found together with other small molecules that show anti-QS properties too. The aim of this study was to find the most effective combinations of coumarins and small plant-derived molecules identified in various plants extracts that inhibit QS in Chromobacterium violaceum ATCC 31532 violacein production bioassay. The coumarin and its derivatives: 7-hydroxycoumarin, 7.8-dihydroxy-4-methylcoumarin, were included in the study. Combinations of coumarins with gamma-octalactone, 4-hexyl-1.3-benzenediol, 3.4.5-trimethoxyphenol and vanillin, previously identified in oak bark (Quercus cortex), and eucalyptus leaves (Eucalyptus viminalis) extracts, were analyzed in a bioassay. When testing two-component compositions, it was shown that 7.8-dihydroxy-4-methylcoumarin, 4-hexyl-1.3-benzendiol, and gamma-octalactone showed a supra-additive anti-QS effect. Combinations of all three molecules resulted in a three- to five-fold reduction in the concentration of each compound needed to achieve EC50 (half maximal effective concentration) against QS in C. violaceum ATCC 31532.
Collapse
Affiliation(s)
| | | | - Elena Rusakova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia; (D.D.); (K.I.); (G.D.)
| | | |
Collapse
|
14
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|