1
|
Thomas SA, Clements-Nolle KD, Wagner KD, Omaye S, Lu M, Yang W. Adverse childhood experiences, antenatal stressful life events, and marijuana use during pregnancy: A population-based study. Prev Med 2023; 174:107656. [PMID: 37543311 DOI: 10.1016/j.ypmed.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Cumulative exposure to adverse childhood experiences (ACEs) and antenatal stressful life events (ASLEs) are independently associated with marijuana use during pregnancy. However, research has not explored how both exposures may influence marijuana use jointly. Assessing the joint associations of ACEs and recent ASLEs on marijuana use can identify people who may benefit from early intervention. Data come from the Nevada Pregnancy Risk Assessment Monitoring System, 2017-2020 (N = 2483). We assessed eight measures of ACEs before age 18 and fourteen measures of ASLEs twelve months before giving birth. Generalized estimating equations estimated the direct and joint associations (additive and multiplicative interaction) of ACEs and ASLEs on marijuana use during pregnancy. 9.8% used marijuana during the most recent pregnancy. Compared to people who reported no ACEs, those reporting 1 ACE (adjusted prevalence ratio[aPR] = 1.96, 95% confidence interval [CI] = 1.30-2.94), 3 ACEs (aPR = 3.58, 95%CI = 2.69-4.77), and 4+ ACEs (aPR = 3.67, 95%CI = 2.36-5.72) were more likely to use marijuana. Compared to people reporting no ASLEs, those reporting 4+ ASLEs (aPR = 3.12, 95% CI = 1.64-5.92) were more likely to use marijuana. There was evidence of interaction for high ACE and ASLE exposure on an additive scale. ACEs and ASLEs were independently associated with marijuana use during pregnancy, and there was evidence of additive interaction. Screening for ACEs and ASLEs during pregnancy, referrals to appropriate behavioral health services, and trauma-informed approaches are important to address marijuana use during pregnancy.
Collapse
Affiliation(s)
- Shawn A Thomas
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Kristen D Clements-Nolle
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Karla D Wagner
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Stanley Omaye
- College of Agriculture, Biotechnology, & Natural Resources, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Minggen Lu
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Wei Yang
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
2
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
3
|
Wang B, Chen J, Sheng Z, Lian W, Wu Y, Liu M. Embryonic exposure to fentanyl induces behavioral changes and neurotoxicity in zebrafish larvae. PeerJ 2022; 10:e14524. [PMID: 36540796 PMCID: PMC9760023 DOI: 10.7717/peerj.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The use of fentanyl during pregnancy, whether by prescription or illicit use, may result in high blood levels that pose an early risk to fetal development. However, little is known regarding the neurotoxicity that might arise from excessive fentanyl exposure in growing organisms, particularly drug-related withdrawal symptoms. In this study, zebrafish embryos were exposed to fentanyl solutions (0.1, 1, and 5 mg/L) for 5 days post fertilization (dpf), followed by a 5-day recovery period, and then the larvae were evaluated for photomotor response, anxiety behavior, shoaling behavior, aggression, social preference, and sensitization behavior. Fentanyl solutions at 1 and 5 mg/L induced elevated anxiety, decreased social preference and aggressiveness, and behavioral sensitization in zebrafish larvae. The expression of genes revealed that embryonic exposure to fentanyl caused substantial alterations in neural activity (bdnf, c-fos) and neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). These results suggest that fentanyl exposure during embryonic development is neurotoxic, highlighting the importance of zebrafish as an aquatic species in research on the neurobehavioral effects of opioids in vertebrates.
Collapse
Affiliation(s)
- Binjie Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiale Chen
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhong Sheng
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Wanting Lian
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Meng Liu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Olyaei AF, Campbell LR, Roberts VHJ, Lo JO. Animal Models Evaluating the Impact of Prenatal Exposure to Tobacco and Marijuana. Clin Obstet Gynecol 2022; 65:334-346. [PMID: 35125391 PMCID: PMC9885625 DOI: 10.1097/grf.0000000000000693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Within this review, the literature and outcomes from animal models of maternal marijuana use and cigarette smoking are summarized. The existing data demonstrate that prenatal marijuana and nicotine exposure both have multifaceted adverse effects on maternal, gestational, placental, and fetal outcomes. These include placental function and development, fetal growth and birth weight, and offspring neurodevelopment.
Collapse
Affiliation(s)
| | - Lily R Campbell
- Department of Biology, Boston University, Boston, Massachusetts
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jamie O Lo
- Obstetrics and Gynecology, Oregon Health and Science University, Portland
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| |
Collapse
|
5
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
6
|
Bailone RL, Fukushima HCS, de Aguiar LK, Borra RC. The endocannabinoid system in zebrafish and its potential to study the effects of Cannabis in humans. Lab Anim Res 2022; 38:5. [PMID: 35193700 PMCID: PMC8862295 DOI: 10.1186/s42826-022-00116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Zebrafish is considered an unprecedented animal model in drug discovery. A review of the literature presents highlights and elucidates the biological effects of chemical components found in Cannabis sativa. Particular attention is paid to endocannabinoid system (eCB) and its main receptors (CB1 and CB2). The zebrafish model is a promising one for the study of cannabinoids because of the many similarities to the human system. Despite the recent advances on the eCB system, there is still the need to elucidate some of the interactions and, thus, the zebrafish model can be used for that purpose as it respects the 3Rs concept and reduced time and costs. In view of the relevance of cannabinoids in the treatment and prevention of diseases, as well as the importance of the zebrafish animal model in elucidating the biological effects of new drugs, the aim of this study was to bring to light information on the use of the zebrafish animal model in testing C. sativa-based medicines.
Collapse
|
7
|
Marrs JA, Sarmah S. The Genius of the Zebrafish Model: Insights on Development and Disease. Biomedicines 2021; 9:biomedicines9050577. [PMID: 34065228 PMCID: PMC8160874 DOI: 10.3390/biomedicines9050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023] Open
|
8
|
Sales Cadena MR, Cadena PG, Watson MR, Sarmah S, Boehm Ii SL, Marrs JA. Zebrafish (Danio rerio) larvae show behavioral and embryonic development defects when exposed to opioids at embryo stage. Neurotoxicol Teratol 2021; 85:106964. [PMID: 33621603 DOI: 10.1016/j.ntt.2021.106964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Opioid abuse continues to plague society, and in recent years, there has been an epidemic, leading to increased addiction and death. It is poorly understood how prenatal opioid use affects the lives of children. The aim of this work was to evaluate the effect of early embryonic codeine or morphine exposure in zebrafish (Danio rerio), examining gastrulation progression (epiboly), teratogenic effects, mortality and locomotor behavior response to light/dark cycles. Zebrafish embryos were exposed to codeine or morphine (designated C or M) at 1, 5 or 10 mg/L (designated 01, 05 or 10, respectively) from 3 to 24 h postfertilization (hpf) or from 3 to 48 hpf (designated -24 or - 48 for 1 or 2 days of exposure, respectively). The C10-24, C01-48, C05-48 and C10-48 groups showed significantly smaller eyes than control larvae at 7 days postfertilization (dpf). Locomotor behavior of control larvae in light/dark cycles showed greater swimming time and distance in dark cycles. Two-day codeine exposure produced strong effects, showing no significant response due to light/dark cycles in distance moved. Morphine exposed groups showed similar effects as observed in 2-day codeine exposed groups, showing less large movement activity and also no significant difference between inactive duration in response to light/dark cycles. In conclusion, we observed low teratogenic effects and mortality effects. Animals exposed to high levels and higher exposure times of opioids were hypoactive, relative to controls, in the dark period. Future studies will be needed to understand the neural defects producing behavior changes.
Collapse
Affiliation(s)
- Marilia R Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil.
| | - Pabyton G Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife, PE, Brazil
| | - Meredith R Watson
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA
| | - Stephen L Boehm Ii
- Department of Psychology, Indiana University - Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|