1
|
Anand J, Droby G, Joseph S, Patel U, Zhang X, Klomp J, Der C, Purvis J, Wolff S, Bowser J, Vaziri C. TRIP13 protects pancreatic cancer cells against intrinsic and therapy-induced DNA replication stress. NAR Cancer 2025; 7:zcaf009. [PMID: 40115747 PMCID: PMC11923746 DOI: 10.1093/narcan/zcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
Oncogene activation in normal untransformed cells induces DNA replication stress and creates a dependency on DNA damage response (DDR) mechanisms for cell survival. Different oncogenic stimuli signal via distinct mechanisms in every cancer setting. The DDR is also pathologically reprogrammed and deployed in diverse ways in different cancers. Because mutant KRAS is the driver oncogene in 90% of pancreatic ductal adenocarcinomas (PDACs), here we have investigated DDR mechanisms by which KRAS-induced DNA replication stress is tolerated in normal human pancreatic epithelial cells [human pancreatic nestin-expressing (HPNE) cells]. Using a candidate screening approach, we identify TRIP13 as a KRASG12V-induced messenger RNA that is also expressed at high levels in PDAC relative to normal tissues. Using genetic and pharmacological tools, we show that TRIP13 is necessary to sustain ongoing DNA synthesis and viability specifically in KRASG12V-expressing cells. TRIP13 promotes survival of KRASG12V-expressing HPNE cells in a homologous recombination (HR)-dependent manner. KRASG12V-expressing HPNE cells lacking TRIP13 acquire hallmark HR deficiency phenotypes, including sensitivity to inhibitors of translesion synthesis and poly-ADP ribose polymerase. Established PDAC cell lines are also sensitized to intrinsic DNA damage and therapy-induced genotoxicity following TRIP13 depletion. Taken together, our results expose TRIP13 as an attractive new and therapeutically tractable vulnerability of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Jay R Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Gaith N Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Urvi Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jeffrey A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
2
|
Anand JR, Droby GN, Joseph S, Patel U, Zhang X, Klomp JA, Der CJ, Purvis JE, Wolff SC, Bowser J, Vaziri C. TRIP13 protects pancreatic cancer cells against intrinsic and therapy-induced DNA replication stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634889. [PMID: 39975297 PMCID: PMC11838190 DOI: 10.1101/2025.01.26.634889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Oncogene activation in normal untransformed cells induces DNA replication stress and creates a dependency on DNA Damage Response (DDR) mechanisms for cell survival. Different oncogenic stimuli signal via distinct mechanisms in every cancer setting. The DDR is also pathologically re-programmed and deployed in diverse ways in different cancers. Because mutant KRAS is the driver oncogene in 90% of Pancreatic Ductal Adenocarcinomas (PDAC), here we have investigated DDR mechanisms by which KRAS-induced DNA replication stress is tolerated in normal human pancreatic epithelial cells (HPNE). Using a candidate screening approach, we identify TRIP13 as a KRASG12V-induced mRNA that is also expressed at high levels in PDAC relative to normal tissues. Using genetic and pharmacological tools, we show that TRIP13 is necessary to sustain ongoing DNA synthesis and viability specifically in KRASG12V-expressing cells. TRIP13 promotes survival of KRASG12V-expressing HPNE cells in a Homologous Recombination (HR)-dependent manner. KRASG12V-expressing HPNE cells lacking TRIP13 acquire hallmark HR-deficiency (HRD) phenotypes including sensitivity to inhibitors of Trans-Lesion Synthesis (TLS) and Poly-ADP Ribose Polymerase (PARP). Established PDAC cell lines are also sensitized to intrinsic DNA damage and therapy-induced genotoxicity following TRIP13-depletion. Taken together our results expose TRIP13 as an attractive new and therapeutically-tractable vulnerability of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Jay R Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gaith N Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Urvi Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Kumarasamy V, Wang J, Frangou C, Wan Y, Dynka A, Rosenheck H, Dey P, Abel EV, Knudsen ES, Witkiewicz AK. The Extracellular Niche and Tumor Microenvironment Enhance KRAS Inhibitor Efficacy in Pancreatic Cancer. Cancer Res 2024; 84:1115-1132. [PMID: 38294344 PMCID: PMC10982648 DOI: 10.1158/0008-5472.can-23-2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that lacks effective treatment options, highlighting the need for developing new therapeutic interventions. Here, we assessed the response to pharmacologic inhibition of KRAS, the central oncogenic driver of PDAC. In a panel of PDAC cell lines, inhibition of KRASG12D with MRTX1133 yielded variable efficacy in suppressing cell growth and downstream gene expression programs in 2D cultures. On the basis of CRISPR-Cas9 loss-of-function screens, ITGB1 was identified as a target to enhance the therapeutic response to MRTX1133 by regulating mechanotransduction signaling and YAP/TAZ expression, which was confirmed by gene-specific knockdown and combinatorial drug synergy. Interestingly, MRTX1133 was considerably more efficacious in 3D cell cultures. Moreover, MRTX1133 elicited a pronounced cytostatic effect in vivo and controlled tumor growth in PDAC patient-derived xenografts. In syngeneic models, KRASG12D inhibition led to tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicated that MRTX1133-mediated KRAS inhibition enhanced IFNγ signaling and induced antigen presentation that modulated the tumor microenvironment. Further investigation of the immunologic response using single-cell sequencing and multispectral imaging revealed that tumor regression was associated with suppression of neutrophils and influx of effector CD8+ T cells. Together, these findings demonstrate that both tumor cell-intrinsic and -extrinsic events contribute to response to MRTX1133 and credential KRASG12D inhibition as a promising therapeutic strategy for a large percentage of patients with PDAC. SIGNIFICANCE Pharmacologic inhibition of KRAS elicits varied responses in pancreatic cancer 2D cell lines, 3D organoid cultures, and xenografts, underscoring the importance of mechanotransduction and the tumor microenvironment in regulating therapeutic responses.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Costakis Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yin Wan
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Andrew Dynka
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ethan V. Abel
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Agnieszka K. Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
4
|
Salu P, Reindl KM. Advancements in Preclinical Models of Pancreatic Cancer. Pancreas 2024; 53:e205-e220. [PMID: 38206758 PMCID: PMC10842038 DOI: 10.1097/mpa.0000000000002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
ABSTRACT Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Collapse
Affiliation(s)
- Philip Salu
- From the Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | |
Collapse
|
5
|
Bekaii-Saab TS, Yaeger R, Spira AI, Pelster MS, Sabari JK, Hafez N, Barve M, Velastegui K, Yan X, Shetty A, Der-Torossian H, Pant S. Adagrasib in Advanced Solid Tumors Harboring a KRASG12C Mutation. J Clin Oncol 2023; 41:4097-4106. [PMID: 37099736 PMCID: PMC10852394 DOI: 10.1200/jco.23.00434] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
PURPOSE Adagrasib, a KRASG12C inhibitor, has demonstrated clinical activity in patients with KRASG12C-mutated non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). KRASG12C mutations occur rarely in other solid tumor types. We report evaluation of the clinical activity and safety of adagrasib in patients with other solid tumors harboring a KRASG12C mutation. METHODS In this phase II cohort of the KRYSTAL-1 study (ClinicalTrials.gov identifier: NCT03785249; phase Ib cohort), we evaluated adagrasib (600 mg orally twice daily) in patients with KRASG12C-mutated advanced solid tumors (excluding NSCLC and CRC). The primary end point was objective response rate. Secondary end points included duration of response, progression-free survival (PFS), overall survival, and safety. RESULTS As of October 1, 2022, 64 patients with KRASG12C-mutated solid tumors were enrolled and 63 patients treated (median follow-up, 16.8 months). The median number of prior lines of systemic therapy was 2. Among 57 patients with measurable disease at baseline, objective responses were observed in 20 (35.1%) patients (all partial responses), including 7/21 (33.3%) responses in pancreatic and 5/12 (41.7%) in biliary tract cancers. The median duration of response was 5.3 months (95% CI, 2.8 to 7.3) and median PFS was 7.4 months (95% CI, 5.3 to 8.6). Treatment-related adverse events (TRAEs) of any grade were observed in 96.8% of patients and grade 3-4 in 27.0%; there were no grade 5 TRAEs. TRAEs did not lead to treatment discontinuation in any patients. CONCLUSION Adagrasib demonstrates encouraging clinical activity and is well tolerated in this rare cohort of pretreated patients with KRASG12C-mutated solid tumors.
Collapse
Affiliation(s)
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander I. Spira
- Virginia Cancer Specialists, Fairfax, VA
- NEXT Oncology, Fairfax, VA
- US Oncology Research, The Woodlands, TX
| | | | - Joshua K. Sabari
- Perlmutter Cancer Center, New York University Langone Health, New York, NY
| | | | | | | | | | | | | | - Shubham Pant
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Kumarasamy V, Frangou C, Wang J, Wan Y, Dynka A, Rosenheck H, Dey P, Abel EV, Knudsen ES, Witkiewicz AK. Pharmacologically targeting KRAS G12D in PDAC models: tumor cell intrinsic and extrinsic impact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533261. [PMID: 37162905 PMCID: PMC10168422 DOI: 10.1101/2023.03.18.533261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease for which new therapeutic interventions are needed. Here we assessed the cellular response to pharmacological KRAS inhibition, which target the central oncogenic factor in PDAC. In a panel of PDAC cell lines, pharmaceutical inhibition of KRAS G12D allele, with MRTX1133 yields variable efficacy in the suppression of cell growth and downstream gene expression programs in 2D culture. CRISPR screens identify new drivers for enhanced therapeutic response that regulate focal adhesion and signaling cascades, which were confirmed by gene specific knockdowns and combinatorial drug synergy. Interestingly, MRTX1133 is considerably more efficacious in the context of 3D cell cultures and in vivo PDAC patient-derived xenografts. In syngeneic models, KRAS G12D inhibition elicits potent tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicates that MRTX1133 activates interferon-γ signaling and induces antigen presentation that modulate the tumor microenvironment. Further investigation on the immunological response using single cell sequencing and multispectral imaging reveals that tumor regression is associated with suppression of neutrophils and influx of effector CD8 + T-cells. Thus, both tumor cell intrinsic and extrinsic events contribute to response and credential KRAS G12D inhibition as promising strategy for a large percentage of PDAC tumors.
Collapse
|
7
|
Raza F, Evans L, Motallebi M, Zafar H, Pereira-Silva M, Saleem K, Peixoto D, Rahdar A, Sharifi E, Veiga F, Hoskins C, Paiva-Santos AC. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater 2023; 157:1-23. [PMID: 36521673 DOI: 10.1016/j.actbio.2022.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the harshest and most challenging cancers to treat, often labeled as incurable. Chemotherapy continues to be the most popular treatment yet yields a very poor prognosis. The main barriers such as inefficient drug penetration and drug resistance, have led to the development of drug carrier systems. The benefits, ease of fabrication and modification of liposomes render them as ideal future drug delivery systems. This review delves into the versatility of liposomes to achieve various mechanisms of treatment for pancreatic cancer. Not only are there benefits of loading chemotherapy drugs and targeting agents onto liposomes, as well as mRNA combined therapy, but liposomes have also been exploited for immunotherapy and can be programmed to respond to photothermal therapy. Multifunctional liposomal formulations have demonstrated significant pre-clinical success. Functionalising drug-encapsulated liposomes has resulted in triggered drug release, specific targeting, and remodeling of the tumor environment. Suppressing tumor progression has been achieved, due to their ability to more efficiently and precisely deliver chemotherapy. Currently, no multifunctional surface-modified liposomes are clinically approved for pancreatic cancer thus we aim to shed light on the trials and tribulations and progress so far, with the hope for liposomal therapy in the future and improved patient outcomes. STATEMENT OF SIGNIFICANCE: Considering that conventional treatments for pancreatic cancer are highly associated with sub-optimal performance and systemic toxicity, the development of novel therapeutic strategies holds outmost relevance for pancreatic cancer management. Liposomes are being increasingly considered as promising nanocarriers for providing not only an early diagnosis but also effective, highly specific, and safer treatment, improving overall patient outcome. This manuscript is the first in the last 10 years that revises the advances in the application of liposome-based formulations in bioimaging, chemotherapy, phototherapy, immunotherapy, combination therapies, and emergent therapies for pancreatic cancer management. Prospective insights are provided regarding several advantages resulting from the use of liposome technology in precision strategies, fostering new ideas for next-generation diagnosis and targeted therapies of pancreatic cancer.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lauren Evans
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Mahzad Motallebi
- Immunology Board for Transplantation And Cell-based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Clare Hoskins
- Pure and Applied Chemistry, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
8
|
Golan T, Raitses-Gurevich M, Beller T, Carroll J, Brody JR. Strategies for the Management of Patients with Pancreatic Cancer with PARP Inhibitors. Cancer Treat Res 2023; 186:125-142. [PMID: 37978134 DOI: 10.1007/978-3-031-30065-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A subset of patients with pancreatic adenocarcinomas (PDAC) harbor mutations that are exploitable in the context of DNA-damage response and repair (DDR) inhibitory strategies. Between 8-18% of PDACs harbor specific mutations in the DDR pathway such as BRCA1/2 mutations, and a higher prevalence exists in high-risk populations (e.g., Ashkenazi Jews). Herein, we will review the current trials and data on the treatment of PDAC patients who harbor such mutations and who appear sensitive to platinum and/or poly ADP ribose polymerase inhibitor (PARPi) based therapies due to a concept known as synthetic lethality. Although this current best-in-class precision treatment shows clinical promise, the specter of resistance limits the extent of therapeutic responses. We therefore also evaluate promising pre-clinical and clinical approaches in the pipeline that may either work with existing therapies to break resistance or work separately with combination therapies against this subset of PDACs.
Collapse
Affiliation(s)
- Talia Golan
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maria Raitses-Gurevich
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Beller
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Carroll
- Department of Surgery, Brenden Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Brody
- Department of Surgery, Brenden Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
9
|
Chan CH, Chiou LW, Lee TY, Liu YR, Hsieh TH, Yang CY, Jeng YM. PAK and PI3K pathway activation confers resistance to KRAS G12C inhibitor sotorasib. Br J Cancer 2023; 128:148-159. [PMID: 36319849 PMCID: PMC9814377 DOI: 10.1038/s41416-022-02032-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND KRAS is a frequently mutated oncogene in human cancer. Clinical studies on the covalent inhibitors of the KRASG12C mutant have reported promising results. However, primary and acquired resistance may limit their clinical use. METHODS Sotorasib-resistant cell lines were established. We explored the signalling pathways activated in these resistant cell lines and their roles in sotorasib resistance. RESULTS The resistant cells exhibited increased cell-matrix adhesion with increased levels of stress fibres and focal adherens. p21-activated kinases (PAKs) were activated in resistant cells, which phosphorylate MEK at serine 298 of MEK and serine 338 of c-Raf to activate the mitogen-activated protein kinase pathway. The PAK inhibitors FRAX597 and FRAX486 in synergy with sotorasib reduced the viability of KRASG12C mutant cancer cells. Furthermore, the PI3K/AKT pathway was constitutively active in sotorasib-resistant cells. The overexpression of constitutively activated PI3K or the knockdown of PTEN resulted in resistance to sotorasib. PI3K inhibitor alpelisib was synergistic with sotorasib in compromising the viability of KRASG12C mutant cancer cells. Moreover, PI3K and PAK pathways formed a mutual positive regulatory loop that mediated sotorasib resistance. CONCLUSIONS Our results indicate that the cell-matrix interaction-dependent activation of PAK mediates resistance to sotorasib through the activation of MAPK and PI3K pathways.
Collapse
Affiliation(s)
- Chien-Hui Chan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Wen Chiou
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yu Lee
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Bannoura SF, Khan HY, Azmi AS. KRAS G12D targeted therapies for pancreatic cancer: Has the fortress been conquered? Front Oncol 2022; 12:1013902. [PMID: 36531078 PMCID: PMC9749787 DOI: 10.3389/fonc.2022.1013902] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
KRAS mutations are among the most commonly occurring mutations in cancer. After being deemed undruggable for decades, KRAS G12C specific inhibitors showed that small molecule inhibitors can be developed against this notorious target. At the same time, there is still no agent that could target KRAS G12D which is the most common KRAS mutation and is found in the majority of KRAS-mutated pancreatic tumors. Nevertheless, significant progress is now being made in the G12D space with the development of several compounds that can bind to and inhibit KRAS G12D, most notably MRTX1133. Exciting advances in this field also include an immunotherapeutic approach that uses adoptive T-cell transfer to specifically target G12D in pancreatic cancer. In this mini-review, we discuss recent advances in KRAS G12D targeting and the potential for further clinical development of the various approaches.
Collapse
Affiliation(s)
- Sahar F. Bannoura
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, United States
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Asfar S. Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Zhou S, Szöllősi AG, Huang X, Chang-Chien YC, Hajdu A. A Novel Immune-Related Gene Prognostic Index (IRGPI) in Pancreatic Adenocarcinoma (PAAD) and Its Implications in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14225652. [PMID: 36428747 PMCID: PMC9688924 DOI: 10.3390/cancers14225652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies, with less than 10% of patients surviving more than 5 years. Existing biomarkers for reliable survival rate prediction need to be enhanced. As a result, the objective of this study was to create a novel immune-related gene prognostic index (IRGPI) for estimating overall survival (OS) and to analyze the molecular subtypes based on this index. Materials and procedures: RNA sequencing and clinical data were retrieved from publicly available sources and analyzed using several R software packages. A unique IRGPI and optimum risk model were developed using a machine learning algorithm. The prediction capability of our model was then compared to that of previously proposed models. A correlation study was also conducted between the immunological tumor microenvironment, risk groups, and IRGPI genes. Furthermore, we classified PAAD into different molecular subtypes based on the expression of IRGPI genes and investigated their features in tumor immunology using the K-means clustering technique. RESULTS A 12-gene IRGPI (FYN, MET, LRSAM1, PSPN, ERAP2, S100A1, IL20RB, MAP3K14, SEMA6C, PRKCG, CXCL11, and GH1) was established, and verified along with a risk model. OS prediction by our model outperformed previous gene signatures. According to the findings of our correlation studies, different risk groups and IRGPI genes were found to be tightly related to tumor microenvironments, and PAAD could be further subdivided into immunologically distinct molecular subtypes based on the expression of IRGPI genes. CONCLUSION The current study constructed and verified a unique IRGPI. Furthermore, our findings revealed a connection between the IRGPI and the immunological microenvironment of tumors. PAAD was differentiated into several molecular subtypes that might react differently to immunotherapy. These findings could provide new insights for precision and translational medicine for more innovative immunotherapy strategies.
Collapse
Affiliation(s)
- Shujing Zhou
- Department Data Science and Visualization, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Hungary
- Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Xufeng Huang
- Department Data Science and Visualization, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Hungary
- Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Yi-Che Chang-Chien
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (Y.-C.C.-C.); (A.H.)
| | - András Hajdu
- Department Data Science and Visualization, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Hungary
- Correspondence: (Y.-C.C.-C.); (A.H.)
| |
Collapse
|
12
|
Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:897. [PMID: 36284087 PMCID: PMC9596464 DOI: 10.1038/s41419-022-05351-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a prominent extracellular matrix (ECM) deposition and poor prognosis. High levels of ECM proteins derived from tumour cells reduce the efficacy of conventional cancer treatment paradigms and contribute to tumour progression and metastasis. As abundant tumour-promoting cells in the ECM, cancer-associated fibroblasts (CAFs) are promising targets for novel anti-tumour interventions. Nonetheless, related clinical trials are hampered by the lack of specific markers and elusive differences between CAF subtypes. Here, we review the origins and functional diversity of CAFs and show how they create a tumour-promoting milieu, focusing on the crosstalk between CAFs, tumour cells, and immune cells in the tumour microenvironment. Furthermore, relevant clinical advances and potential therapeutic strategies relating to CAFs are discussed.
Collapse
Affiliation(s)
- Tianyi Zhang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yanxian Ren
- grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jufang Wang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Heng Zhou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
13
|
Evan T, Wang VMY, Behrens A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma. Oncogene 2022; 41:4686-4695. [PMID: 36088504 PMCID: PMC9568427 DOI: 10.1038/s41388-022-02448-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
Intratumour heterogeneity (ITH) has become an important focus of cancer research in recent years. ITH describes the cellular variation that enables tumour evolution, including tumour progression, metastasis and resistance to treatment. The selection and expansion of genetically distinct treatment-resistant cancer cell clones provides one explanation for treatment failure. However, tumour cell variation need not be genetically encoded. In pancreatic ductal adenocarcinoma (PDAC) in particular, the complex tumour microenvironment as well as crosstalk between tumour and stromal cells result in exceptionally variable tumour cell phenotypes that are also highly adaptable. In this review we discuss four different types of phenotypic heterogeneity within PDAC, from morphological to metabolic heterogeneity. We suggest that these different types of ITH are not independent, but, rather, can inform one another. Lastly, we highlight recent findings that suggest how therapeutic efforts may halt PDAC progression by constraining cellular heterogeneity.
Collapse
Affiliation(s)
- Theodore Evan
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Axel Behrens
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
- CRUK Convergence Science Centre, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
14
|
Plangger A, Rath B, Stickler S, Hochmair M, Lang C, Weigl L, Funovics M, Hamilton G. Cytotoxicity of combinations of the pan-KRAS SOS1 inhibitor BAY-293 against pancreatic cancer cell lines. Discov Oncol 2022; 13:84. [PMID: 36048281 PMCID: PMC9437170 DOI: 10.1007/s12672-022-00550-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS is mutated in approximately 25% of cancer patients and first KRAS G12C-specific inhibitors showed promising responses. Pancreatic cancer has the highest frequency of KRAS mutations but the prevailing KRAS G12D mutation is difficult to target. Inhibition of the GTP exchange factor (GEF) SOS1-KRAS interaction impairs oncogenic signaling independently of the specific KRAS mutations. In general, cell lines exhibiting KRAS mutations show specific alterations in respect to glucose utilization, signal transduction and stress survival. The aim of this investigation was to check the putative synergy of the SOS1 inhibitor BAY-293 with modulators targeting specific vulnerabilities of KRAS-mutated cell lines in vitro. The cytotoxicity of BAY-293 combinations was tested against MIA PaCa-2 (G12C), AsPC1 (G12D) and BxPC3 (KRAS wildtype) cell lines using MTT tests and calculation of the combination indices (CI) according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose utilization, inhibitors of the downstream MAPK pathway and several chemotherapeutics in dependence of the specific KRAS status of the cell lines. In particular, divergent responses for BAY-293 combinations between pancreatic and NSCLC cell lines were observed for linsitinib, superior inhibitory effects of trametinib and PD98059 in NSCLC, and lack of activity with doxorubicin in case of the pancreatic cell lines. Phosphoproteome analysis revealed inhibition of distinct signaling pathways by BAY-293 for MIA PaCa-2 on the one hand and for Aspc1 and BH1362 on the other hand. In conclusion, BAY-293 exhibits synergy with drugs in dependence of the tumor type and specific KRAS mutation.
Collapse
Affiliation(s)
- Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Clemens Lang
- Department of Trauma Surgery, Sozialmedizinisches Zentrum Ost, Donauspital, Vienna, Austria
| | - Lukas Weigl
- Division of Special Anesthesia and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Funovics
- Department of Cardiovascular and Interventional Radiology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Dou L, Liu H, Wang K, Liu J, Liu L, Ye J, Wang R, Deng H, Qian F. Albumin binding revitalizes NQO1 bioactivatable drugs as novel therapeutics for pancreatic cancer. J Control Release 2022; 349:876-889. [PMID: 35907592 DOI: 10.1016/j.jconrel.2022.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) tumors compared to the associated normal tissues. NQO1 bioactivatable drugs, such as β-lapachone (β-lap), can be catalyzed to generate reactive oxygen species (ROS) for direct tumor killing. However, the extremely narrow therapeutic window caused by methemoglobinemia and hemolytic anemia severely restricts its further clinical translation despite considerable efforts in the past 20 years. Previously, we demonstrated that albumin could be utilized to deliver cytotoxic drugs selectively into KRAS-mutant PDAC with a much expanded therapeutic window due to KRAS-enhanced macropinocytosis and reduced neonatal Fc receptor (FcRn) expression in PDAC. Herein, we analyzed the expression patterns of albumin and FcRn across major organs in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mice. The tumors were the predominant tissues with both elevated albumin and reduced FcRn expression, thus making them an ideal target for albumin-based drug delivery. Quantitative proteomics analysis of tissue samples from 5 human PDAC patients further confirmed the elevated albumin/FcRn ratio. Given such a compelling biological rationale, we designed a nanoparticle albumin-bound prodrug of β-lap, nab-(pro-β-lap), to achieve PDAC targeted delivery and expand the therapeutic window of β-lap. We found that nab-(pro-β-lap) uptake was profoundly enhanced by KRAS mutation. Compared to the solution formulation of the parent drug β-lap, nab-(pro-β-lap) showed enhanced safety due to much lower rates of methemoglobinemia and hemolytic anemia, which was confirmed both in vitro and in vivo. Furthermore, nab-(pro-β-lap) significantly inhibited tumor growth in subcutaneously implanted KPC xenografts and enhanced the pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γ-H2AX). Thus, nab-(pro-β-lap), with improved safety and antitumor efficacy, offers a drug delivery strategy with translational viability for β-lap in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Lei Dou
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Kaixin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Jing Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Lei Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Junxiao Ye
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Rui Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
16
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|
18
|
Multicellular Modelling of Difficult-to-Treat Gastrointestinal Cancers: Current Possibilities and Challenges. Int J Mol Sci 2022; 23:ijms23063147. [PMID: 35328567 PMCID: PMC8955095 DOI: 10.3390/ijms23063147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers affecting the gastrointestinal system are highly prevalent and their incidence is still increasing. Among them, gastric and pancreatic cancers have a dismal prognosis (survival of 5–20%) and are defined as difficult-to-treat cancers. This reflects the urge for novel therapeutic targets and aims for personalised therapies. As a prerequisite for identifying targets and test therapeutic interventions, the development of well-established, translational and reliable preclinical research models is instrumental. This review discusses the development, advantages and limitations of both patient-derived organoids (PDO) and patient-derived xenografts (PDX) for gastric and pancreatic ductal adenocarcinoma (PDAC). First and next generation multicellular PDO/PDX models are believed to faithfully generate a patient-specific avatar in a preclinical setting, opening novel therapeutic directions for these difficult-to-treat cancers. Excitingly, future opportunities such as PDO co-cultures with immune or stromal cells, organoid-on-a-chip models and humanised PDXs are the basis of a completely new area, offering close-to-human models. These tools can be exploited to understand cancer heterogeneity, which is indispensable to pave the way towards more tumour-specific therapies and, with that, better survival for patients.
Collapse
|
19
|
Steiner S, Seleznik GM, Reding T, Stopic M, Lenggenhager D, Ten Buren E, Eshmuminov D, Endhardt K, Hagedorn C, Heidenblut AM, Bratus-Neuenschwander A, Grossmann J, Trachsel C, Jabbar KS, Hahn SA, Berg JV, Graf R, Gupta A. De novo expression of gastrokines in pancreatic precursor lesions impede the development of pancreatic cancer. Oncogene 2022; 41:1507-1517. [PMID: 35082384 PMCID: PMC8897191 DOI: 10.1038/s41388-022-02182-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
Molecular events occurring in stepwise progression from pre-malignant lesions (pancreatic intraepithelial neoplasia; PanIN) to the development of pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Thus, characterization of early PanIN lesions may reveal markers that can help in diagnosing PDAC at an early stage and allow understanding the pathology of the disease. We performed the molecular and histological assessment of patient-derived PanINs, tumor tissues and pancreas from mouse models with PDAC (KC mice that harbor K-RAS mutation in pancreatic tissue), where we noted marked upregulation of gastrokine (GKN) proteins. To further understand the role of gastrokine proteins in PDAC development, GKN-deficient KC mice were developed by intercrossing gastrokine-deficient mice with KC mice. Panc-02 (pancreatic cancer cells of mouse origin) were genetically modified to express GKN1 for further in vitro and in vivo analysis. Our results show that gastrokine proteins were absent in healthy pancreas and invasive cancer, while its expression was prominent in low-grade PanINs. We could detect these proteins in pancreatic juice and serum of KC mice. Furthermore, accelerated PanIN and tumor development were noted in gastrokine deficient KC mice. Loss of gastrokine 1 protein delayed apoptosis during carcinogenesis leading to the development of desmoplastic stroma while loss of gastrokine 2 increased the proliferation rate in precursor lesions. In summary, we identified gastrokine proteins in early pancreatic precursor lesions, where gastrokine proteins delay pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sabrina Steiner
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Gitta M Seleznik
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Theresia Reding
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Matea Stopic
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zürich and University of Zürich, 8091, Zürich, Switzerland
| | - Emiel Ten Buren
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Dilmurodjon Eshmuminov
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zürich and University of Zürich, 8091, Zürich, Switzerland
| | - Catherine Hagedorn
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Anna M Heidenblut
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University of Bochum, 44780, Bochum, Germany
| | | | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich, ETH, 8093, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich, University of Zurich, ETH, 8093, Zurich, Switzerland
| | - Karolina S Jabbar
- Department of Medical Biochemistry, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University of Bochum, 44780, Bochum, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Rolf Graf
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland.
| | - Anurag Gupta
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
20
|
Chen L, Zhang J, Wang X, Li Y, Zhou L, Lu X, Dong G, Sheng C. Discovery of novel KRAS‒PDE δ inhibitors with potent activity in patient-derived human pancreatic tumor xenograft models. Acta Pharm Sin B 2022; 12:274-290. [PMID: 35127385 PMCID: PMC8799878 DOI: 10.1016/j.apsb.2021.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022] Open
Abstract
KRAS‒PDEδ interaction is revealed as a promising target for suppressing the function of mutant KRAS. The bottleneck in clinical development of PDEδ inhibitors is the poor antitumor activity of known chemotypes. Here, we identified novel spiro-cyclic PDEδ inhibitors with potent antitumor activity both in vitro and in vivo. In particular, compound 36l (K D = 127 ± 16 nmol/L) effectively bound to PDEδ and interfered with KRAS-PDEδ interaction. It influenced the distribution of KRAS in Mia PaCa-2 cells, downregulated the phosphorylation of t-ERK and t-AKT and promoted apoptosis of the cells. The novel inhibitor 36l exhibited significant in vivo antitumor potency in pancreatic cancer patient-derived xenograft (PDX) models. It represents a promising lead compound for investigating the druggability of KRAS‒PDEδ interaction.
Collapse
Affiliation(s)
- Long Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jing Zhang
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiongxiong Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding authors. Tel./fax: +86 21 64370045 671003 (Xiongxiong Lu), +86 21 81871242 (Guoqiang Dong), +86 21 81871239 (Chunquan Sheng).
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 64370045 671003 (Xiongxiong Lu), +86 21 81871242 (Guoqiang Dong), +86 21 81871239 (Chunquan Sheng).
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 64370045 671003 (Xiongxiong Lu), +86 21 81871242 (Guoqiang Dong), +86 21 81871239 (Chunquan Sheng).
| |
Collapse
|
21
|
Hamilton G, Plangger A. Cytotoxic activity of KRAS inhibitors in combination with chemotherapeutics. Expert Opin Drug Metab Toxicol 2021; 17:1065-1074. [PMID: 34347509 DOI: 10.1080/17425255.2021.1965123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION KRAS is the most frequently mutated oncogenic driver in pancreatic, lung, and colon cancer. Recently, KRAS inhibitors in clinical use show promising activity but most responses are partial and drug resistance develops. The use of therapeutics in combination with KRAS inhibitors are expected to improve outcomes. AREAS COVERED This review describes the KRAS G12C mutation-specific inhibitors and the SOS1-targeting inhibitors that reduce the GTP-loading of wildtype and mutated KRAS. Both types of compounds reduce tumor cell proliferation in vitro and in vivo. The combinations of the various KRAS inhibitors with downstream signaling effectors, modulators of KRAS-associated metabolic alterations and chemotherapeutics are summarized. EXPERT OPINION The clinical potency of mutated KRAS-specific inhibitors needs to be improved by suitable drug combinations. Inhibition of downstream signaling cascades increases toxicity and other combinations exploited comprise G12C-directed inhibitors with SOS1 inhibitors, glucose/glutamine metabolic modulators, classical chemotherapeutics, and others. The most suitable inhibitor combinations corroborated in preclinical development await clinical verification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department Of Vascular Surgery, Medical University Of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Gu M, Gao Y, Chang P. KRAS Mutation Dictates the Cancer Immune Environment in Pancreatic Ductal Adenocarcinoma and Other Adenocarcinomas. Cancers (Basel) 2021; 13:cancers13102429. [PMID: 34069772 PMCID: PMC8157241 DOI: 10.3390/cancers13102429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The vast majority of patients with pancreatic ductal adenocarcinomas harbor KRAS mutations in their tumors. Functionally, mutated KRAS is not only dedicated to tumor cell proliferation, survival and invasiveness, but also causing the immunosuppression in this cancer. In this situation, current data indicating the therapeutic effects of immune checkpoint inhibitors on pancreatic ductal adenocarcinomas are still not satisfying. In order to reflect the present bottleneck of immune checkpoint inhibitors in managing this cancer, we mainly provide information associated with the mechanism by which KRAS mutations establish the immunosuppressive milieus in pancreatic ductal adenocarcinomas. Together with other advances in this field, future directions to overcome the KRAS mutation-induced immunosuppression in pancreatic ductal adenocarcinomas are raised as well. Meanwhile, lung adenocarcinomas and colorectal adenocarcinomas are enumerated to compare with pancreatic ductal adenocarcinomas, aiming to indicate the specificity of KRAS mutations in dictating tumoral immune milieus among these cancers. Abstract Generally, patients with pancreatic ductal adenocarcinoma, especially those with wide metastatic lesions, have a poor prognosis. Recently, a breakthrough in improving their survival has been achieved by using first-line chemotherapy, such as gemcitabine plus nab-paclitaxel or oxaliplatin plus irinotecan plus 5-fluorouracil plus calcium folinate. Unfortunately, regimens with high effectiveness are still absent in second- or later-line settings. In addition, although immunotherapy using checkpoint inhibitors definitively represents a novel method for metastatic cancers, monotherapy using checkpoint inhibitors is almost completely ineffective for pancreatic ductal adenocarcinomas largely due to the suppressive immune milieu in such tumors. Critically, the genomic alteration pattern is believed to impact cancer immune environment. Surprisingly, KRAS gene mutation is found in almost all pancreatic ductal adenocarcinomas. Moreover, KRAS mutation is indispensable for pancreatic carcinogenesis. On these bases, a relationship likely exists between this oncogene and immunosuppression in this cancer. During pancreatic carcinogenesis, KRAS mutation-driven events, such as metabolic reprogramming, cell autophagy, and persistent activation of the yes-associated protein pathway, converge to cause immune evasion. However, intriguingly, KRAS mutation can dictate a different immune environment in other types of adenocarcinoma, such as colorectal adenocarcinoma and lung adenocarcinoma. Overall, the KRAS mutation can drive an immunosuppression in pancreatic ductal adenocarcinomas or in colorectal carcinomas, but this mechanism is not true in KRAS-mutant lung adenocarcinomas, especially in the presence of TP53 inactivation. As a result, the response of these adenocarcinomas to checkpoint inhibitors will vary.
Collapse
Affiliation(s)
- Meichen Gu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China;
| | - Yanli Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, China;
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China;
- Correspondence: ; Tel.: +86-88783840; Fax: +86-431-88783840
| |
Collapse
|
23
|
Nian Q, Zeng J, He L, Chen Y, Zhang Z, Rodrigues-Lima F, Zhao L, Feng X, Shi J. A small molecule inhibitor targeting SHP2 mutations for the lung carcinoma. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Chen S, Chen C, Hu Y, Song G, Shen X. The diverse roles of circular RNAs in pancreatic cancer. Pharmacol Ther 2021; 226:107869. [PMID: 33895187 DOI: 10.1016/j.pharmthera.2021.107869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the malignant tumors with poor prognosis. The molecular mechanisms of pancreatic oncogenesis and malignant progression are not fully elucidated. Several key signaling pathways, such as Notch, Wnt and hedgehog pathways, are important to drive pancreatic carcinogenesis. Recently, noncoding RNAs, especially circular RNAs (circRNAs), have been characterized to participate into pancreatic cancer development. Therefore, in this review article, we describe the association between circRNAs and pancreatic cancer prognosis. Moreover, we discuss how circRNAs are involved in regulation of cellular processes in pancreatic cancer, including proliferation, apoptosis, cell cycle, migration, invasion, EMT, metastasis, angiogenesis, drug resistance and immune escape. Furthermore, we mention that several compounds could regulate the expression of circRNAs, indicating that targeting circRNAs by compounds might be helpful for treating pancreatic cancer patients.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gendi Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
25
|
Elsayed M, Abdelrahim M. The Latest Advancement in Pancreatic Ductal Adenocarcinoma Therapy: A Review Article for the Latest Guidelines and Novel Therapies. Biomedicines 2021; 9:389. [PMID: 33917380 PMCID: PMC8067364 DOI: 10.3390/biomedicines9040389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in the US, and it is expected to be the second leading cause of cancer deaths by 2030. The lack of effective early screening tests and alarming symptoms with early undetectable micro-metastasis at the time of presentation play a vital role in the high death rate from pancreatic cancer. In addition to this, the low mutation burden in pancreatic cancer, low immunological profile, dense tumorigenesis stroma, and decreased tumor sensitivity to cytotoxic drugs contribute to the low survival rates in PDAC patients. Despite breakthroughs in chemotherapeutic and immunotherapeutic drugs, pancreatic cancer remains one of the solid tumors that exhibit meager curative rates. Therefore, researchers must dedicate more effort to understanding the pathology and immunological behavior of PDAC, in addition to properly utilizing more advanced screening modalities and new therapeutic agents. In our review, we focus mainly on the latest updates from clinical guidelines and novel therapies that have been recently investigated or are under investigation for PDAC. We used PubMed as a search tool for finding original research articles addressing the latest developments in diagnosing and treating PDAC. Additionally, we also used the clinical trials published on clinicaltrialsgov as sources for our data.
Collapse
Affiliation(s)
- Marwa Elsayed
- School of Medicine, University of Missouri Kansas City, 2301 Holmes, St. Kansas City, MO 64018, USA;
| | - Maen Abdelrahim
- Houston Methodist Cancer Center, Houston Methodist Hospital, 6445 Main Street, Outpatient Center, 24th Floor, Houston, TX 77030, USA
- Cockrell Center of Advanced Therapeutics Phase I Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Institute of Academic Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Chiu CF, Hsu MI, Yeh HY, Park JM, Shen YS, Tung TH, Huang JJ, Wu HT, Huang SY. Eicosapentaenoic Acid Inhibits KRAS Mutant Pancreatic Cancer Cell Growth by Suppressing Hepassocin Expression and STAT3 Phosphorylation. Biomolecules 2021; 11:biom11030370. [PMID: 33801246 PMCID: PMC8001293 DOI: 10.3390/biom11030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation was reported to be the signature genetic event in most cases of pancreatic ductal adenocarcinoma (PDAC). Hepassocin (HPS/FGL1) is involved in regulating lipid metabolism and the progression of several cancer types; however, the underlying mechanism of HPS/FGL1 in the KRAS mutant PDAC cells undergoing eicosapentaenoic acid (EPA) treatment remains unclear. Methods: We measured HPS/FGL1 protein expressions in a human pancreatic ductal epithelial (HPNE) normal pancreas cell line, a KRAS-wild-type PDAC cell line (BxPC-3), and KRAS-mutant PDAC cell lines (PANC-1, MIA PaCa-2, and SUIT-2) by Western blot methods. HEK293T cells were transiently transfected with corresponding KRAS-expressing plasmids to examine the level of HPS expression with KRAS activation. We knocked-down HPS/FGL1 using lentiviral vectors in SUIT-2 cells and measured the cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenicity assays. Furthermore, a lipidomic analysis was performed to profile changes in lipid metabolism after HPS/FGL1 knockdown. Results: We found that the HPS/FGL1 level was significantly upregulated in KRAS-mutated PDAC cells and was involved in KRAS/phosphorylated (p)-signal transduction and activator of transcription 3 (STAT3) signaling, and the knockdown of HPS/FGL1 in SUIT-2 cells decreased cell proliferation through increasing G2/M cell cycle arrest and cyclin B1 expression. In addition, the knockdown of HPS/FGL1 in SUIT-2 cells significantly increased omega-3 polyunsaturated fatty acids (PUFAs) and EPA production but not docosahexaenoic acid (DHA). Moreover, EPA treatment in SUIT-2 cells reduced the expression of de novo lipogenic protein, acetyl coenzyme A carboxylase (ACC)-1, and decreased p-STAT3 and HPS/FGL1 expressions, resulting in the suppression of cell viability. Conclusions: Results of this study indicate that HPS is highly expressed by KRAS-mutated PDAC cells, and HPS/FGL1 plays a crucial role in altering lipid metabolism and increasing cell growth in pancreatic cancer. EPA supplements could potentially inhibit or reduce ACC-1-involved lipogenesis and HPS/FGL1-mediated cell survival in KRAS-mutated pancreatic cancer cells.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-I Hsu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yen Yeh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Ji Min Park
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Yu-Shiuan Shen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
| | - Jun-Jie Huang
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan;
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- Correspondence: (H.-T.W.); (S.-Y.H.)
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (M.-I.H.); (J.M.P.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.Y.); (Y.-S.S.); (T.-H.T.)
- Correspondence: (H.-T.W.); (S.-Y.H.)
| |
Collapse
|
27
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
28
|
Andreasson C, Ansari D, Ekbom F, Andersson R. Macropinocytosis: the Achilles' heel of pancreatic cancer? Scand J Gastroenterol 2021; 56:177-179. [PMID: 33280476 DOI: 10.1080/00365521.2020.1855471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Carl Andreasson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund SE -221 85, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund SE -221 85, Sweden
| | - Fredrik Ekbom
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund SE -221 85, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund SE -221 85, Sweden
| |
Collapse
|