1
|
Arendt W, Kleszczyński K, Gagat M, Izdebska M. Endometriosis and Cytoskeletal Remodeling: The Functional Role of Actin-Binding Proteins. Cells 2025; 14:360. [PMID: 40072086 PMCID: PMC11898689 DOI: 10.3390/cells14050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis. This review aims to summarize current knowledge on the involvement of key ABPs in the development and pathophysiology of endometriosis. We discuss how these proteins influence cytoskeletal remodeling, focal adhesion formation, and interactions with the extracellular matrix, contributing to the unique mechanical properties of endometriotic cells. Furthermore, we explore the putative potential of targeting ABPs as a therapeutic strategy to mitigate the invasive phenotype of endometriotic lesions. By elucidating the role of ABPs in endometriosis, this review provides a foundation for future research and innovative treatment approaches.
Collapse
Affiliation(s)
- Wioletta Arendt
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.A.); (M.G.)
| |
Collapse
|
2
|
Xu H, Li W, Xue K, Zhang H, Li H, Yu H, Hu L, Gu Y, Li H, Sun X, Liu Q, Wang D. ADAR1-regulated miR-142-3p/RIG-I axis suppresses antitumor immunity in nasopharyngeal carcinoma. Noncoding RNA Res 2025; 10:116-129. [PMID: 39351449 PMCID: PMC11439846 DOI: 10.1016/j.ncrna.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Following the initial treatment of nasopharyngeal carcinoma (NPC), tumor progression often portends an adverse prognosis for these patients. MicroRNAs (miRNAs) have emerged as critical regulators of tumor immunity, yet their intricate mechanisms in NPC remain elusive. Through comprehensive miRNA sequencing, tumor tissue microarrays and tissue samples analysis, we identified miR-142-3p as a significantly upregulated miRNA that is strongly associated with poor prognosis in recurrent NPC patients. To elucidate the underlying molecular mechanism, we employed RNA sequencing, coupled with cellular and tissue assays, to identify the downstream targets and associated signaling pathways of miR-142-3p. Our findings revealed two potential targets, CFL2 and WASL, which are directly targeted by miR-142-3p. Functionally, overexpressing CFL2 or WASL significantly reversed the malignant phenotypes induced by miR-142-3p both in vitro and in vivo. Furthermore, signaling pathway analysis revealed that miR-142-3p repressed the RIG-I-mediated immune defense response in NPC by inhibiting the nuclear translocation of IRF3, IRF7 and p65. Moreover, we discovered that ADAR1 physically interacted with Dicer and promoted the formation of mature miR-142-3p in a dose-dependent manner. Collectively, ADAR1-mediated miR-142-3p processing promotes tumor progression and suppresses antitumor immunity, indicating that miR-142-3p may serve as a promising prognostic biomarker and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Haoyuan Xu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Wanpeng Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Kai Xue
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Huankang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Han Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Haoran Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Li Hu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Yurong Gu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Houyong Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Xicai Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Quan Liu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Dehui Wang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| |
Collapse
|
3
|
Roberts LB, Neves JF, Lee DCH, Valpione S, Tachó-Piñot R, Howard JK, Hepworth MR, Lord GM. MicroRNA-142 regulates gut associated lymphoid tissues and group 3 innate lymphoid cells. Mucosal Immunol 2025; 18:39-52. [PMID: 39245145 PMCID: PMC11835792 DOI: 10.1016/j.mucimm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The transcriptomic signatures that shape responses of innate lymphoid cells (ILCs) have been well characterised, however post-transcriptional mechanisms which regulate their development and activity remain poorly understood. We demonstrate that ILC groups of the intestinal lamina propria express mature forms of microRNA-142 (miR-142), an evolutionarily conserved microRNA family with several non-redundant regulatory roles within the immune system. Germline Mir142 deletion alters intestinal ILC compositions, resulting in the absence of T-bet+ populations and significant defects in the cellularity and phenotypes of ILC3 subsets including CCR6+ LTi-like ILC3s. These effects were associated with decreased pathology in an innate-immune cell driven model of colitis. Furthermore, Mir142-/- mice demonstrate defective development of gut-associated lymphoid tissues, including a complete absence of mature Peyer's patches. Conditional deletion of Mir142 in ILC3s (RorcΔMir142) supported cell-intrinsic roles for these microRNAs in establishing or maintaining cellularity and functions of LTi-like ILC3s in intestinal associated tissues. RNAseq analysis revealed several target genes and biological pathways potentially regulated by miR-142 microRNAs in these cells. Finally, lack of Mir142 in ILC3 led to elevated IL-17A production. These data broaden our understanding of immune system roles of miR-142 microRNAs, identifying these molecules as critical post-transcriptional regulators of ILC3s and intestinal mucosal immunity.
Collapse
Affiliation(s)
- Luke B Roberts
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom.
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Dave C H Lee
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Sara Valpione
- The Christie NHS Foundation Trust, 550 Wilmslow Road, M20 4BX Manchester, United Kingdom; Division of Cancer Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom; Cancer Research UK National Biomarker Centre, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Roser Tachó-Piñot
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Graham M Lord
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom; Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom.
| |
Collapse
|
4
|
Zhang Y, Ma S, Zhang J, Lou L, Liu W, Gao C, Miao L, Sun F, Chen W, Cao X, Wei J. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci Rep 2023; 13:5935. [PMID: 37045834 PMCID: PMC10097650 DOI: 10.1038/s41598-022-21447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/27/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs play a critical regulatory role in different cancers, but their functions in renal cell carcinoma (RCC) have not been elucidated. Reportedly, miR-142-3p is involved in the tumorigenesis and the development of RCC in vitro and is clinically correlated with the poor prognosis of RCC patients. However, the molecular target of miR-142-3p and the underlying mechanism are unclear. In this study, we found that miR-142-3p was upregulated in RCC tumor tissues and downregulated in exosomes compared to normal tissues. The expression of miR-142-3p was inversely associated with the survival of patients with kidney renal clear cell carcinoma (KIRC). RhoBTB3 was reduced in RCC, and miR-142-3p plays an inverse function with RhoBTB3 in KIRC. The direct interaction between RhoBTB3 and miR-142-3p was demonstrated by a dual luciferase reporter assay. miR-142-3p promoted metastasis in the xenograft model, and the suppression of miR-142-3p upregulated RhoBTB3 protein expression and inhibited the mRNAs and proteins of HIF1A, VEGFA, and GGT1. Also, the miR-142-3p overexpression upregulated the mRNA of HIF1A, VEGFA, and GGT1. In conclusion, miR-142-3p functions as an oncogene in RCC, especially in KIRC, by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways, which needs further exploration.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Sha Ma
- Department of Hematopathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, China
| | - Lu Lou
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wanqi Liu
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Chao Gao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Long Miao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Fanghao Sun
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wei Chen
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Xiliang Cao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| | - Jin Wei
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| |
Collapse
|
5
|
Qiao P, Zhu J, Lu X, Jin Y, Wang Y, Shan Q, Wang Y. miR-140-3p suppresses the proliferation and migration of macrophages. Genet Mol Biol 2022; 45:e20210160. [PMID: 35724302 PMCID: PMC9218872 DOI: 10.1590/1678-4685-gmb-2021-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages benefit myelin debris removal, blood vessel formation, and Schwann
cell activation following peripheral nerve injury. Identifying factors that
modulate macrophage phenotype may advantage the repair and regeneration of
injured peripheral nerves. microRNAs (miRNAs) are important regulators of many
physiological and pathological processes, including peripheral nerve
regeneration. Herein, we investigated the regulatory roles of miR-140-3p, a
miRNA that was differentially expressed in injured rat sciatic nerves, in
macrophage RAW264.7 cells. Observations from EdU proliferation assay
demonstrated that elevated miR-140-3p decreased the proliferation rates of
RAW264.7 cells while suppressed miR-140-3p increased the proliferation rates of
RAW264.7 cells. Transwell-based migration assay showed that up-regulated and
down-regulated miR-140-3p led to elevated and reduced migration abilities,
respectively. However, the abundances of numerous phenotypic markers of M1 and
M2 macrophages were not significantly altered by miR-140-3p mimic or inhibitor
transfection. Bioinformatic analysis and miR-140-3p-induced gene suppression
examination suggested that Smad3 might be the target gene of
miR-140-3p. These findings illuminate the inhibitory effects of miR-140-3p on
the proliferation and migration of macrophages and contribute to the cognition
of the essential roles of miRNAs during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Pingping Qiao
- Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu, China
| | - Jun Zhu
- The Affiliated Hospital of Nantong University, Department of Thoracic Surgery, Nantong, Jiangsu, China
| | - Xiaoheng Lu
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yifei Jin
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yifan Wang
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Qianqian Shan
- The Affiliated Hospital of Nantong University, Department of Radiotherapy and Oncology, Nantong, Jiangsu, China
| | - Yaxian Wang
- Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Li Q, Zheng Q, He J, Li L, Xie X, Liang H. Hsa-miR-142-3p reduces collagen I in human scleral fibroblasts by targeting TGF-β1 in high myopia. Exp Eye Res 2022; 219:109023. [PMID: 35276183 DOI: 10.1016/j.exer.2022.109023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022]
Abstract
High myopia has been continually increasing globally until now and often results in visual impairment. Scleral extracellular matrix (ECM) remodeling is considered a common factor contributing to progression of myopia. However, the role of microRNAs (miRNAs) in regulating scleral ECM organization is not well understood. We aimed to explore the effect and regulatory mechanism of hsa-miR-142-3p on collagen I in human scleral fibroblasts in high myopia. First, next-generation sequencing was conducted to identify 37 miRNAs differentially expressed in the aqueous humor of high myopia samples and control samples. Furthermore, hsa-miR-142-3p in the aqueous humor was found to positively relate to the ocular axial length. Besides, the results of immunofluorescence and Western blot assay indicated that hsa-miR-142-3p overexpression decreased collagen I expression in the human fetal scleral fibroblasts (HFSFs); while hsa-miR-142-3p downregulation increased collagen I. Moreover, hsa-miR-142-3p targets TGFβ-1 gene expression. Quantitative polymerase chain reaction (qPCR) and Western blot analysis showed that miRNA 142-3p reduced TGFβ-1 expression while an inhibitor had an opposite effect. Therefore, there is an inverse relationship between changes in miR-142-3p expression levels and those of collagen1a1 in human scleral fibroblasts. Such a dependence suggests that miR-142-3p may be a target to improve therapeutic management of this condition.
Collapse
Affiliation(s)
- Qinglan Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China.
| | - Qianyun Zheng
- Nanning Aier Eye Hospital, Aier Eye Hospital Group, China
| | - Jianfeng He
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Li
- Nanning Aier Eye Hospital, Aier Eye Hospital Group, China
| | - Xiangyong Xie
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China.
| | - Hao Liang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Resveratrol impairs cellular mechanisms associated with the pathogenesis of endometriosis. Reprod Biomed Online 2022; 44:976-990. [DOI: 10.1016/j.rbmo.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
8
|
Yoon S, Yang H, Ryu HM, Lee E, Jo Y, Seo S, Kim D, Lee CH, Kim W, Jung KH, Park SR, Choi EK, Kim SW, Park KS, Lee DH. Integrin αvβ3 Induces HSP90 Inhibitor Resistance via FAK Activation in KRAS-Mutant Non-Small Cell Lung Cancer. Cancer Res Treat 2021; 54:767-781. [PMID: 34607394 PMCID: PMC9296920 DOI: 10.4143/crt.2021.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose HSP90 remains an important cancer target because of its involvement in multiple oncogenic protein pathways and biologic processes. Although many HSP90 inhibitors have been tested in the treatment of KRAS-mutant non-small cell lung cancer (NSCLC), most, including AUY922, have failed due to toxic effects and resistance generation, even though a modest efficacy has been observed for these drugs in clinical trials. In our present study, we investigated the novel mechanism of resistance to AUY922 to explore possible avenues of overcoming and want to provide some insights that may assist with the future development of successful next-generation HSP90 inhibitors. Materials and Methods We established two AUY922-resistant KRAS-mutated NSCLC cells and conducted RNA sequencing to identify novel resistance biomarker. Results We identified novel two resistance biomarkers. We observed that both integrin Av (ITGAv) and β3 (ITGB3) induce AUY922-resistance via focal adhesion kinase (FAK) activation, as well as an epithelial-mesenchymal transition (EMT), in both in vitro and in vivo xenograft model. mRNAs of both ITGAv and ITGB3 were also found to be elevated in a patient who had shown acquired resistance in a clinical trial of AUY922. ITGAv was induced by miR-142 downregulation, and ITGB3 was increased by miR-150 downregulation during the development of AUY922-resistance. Therefore, miR-150 and miR-142 overexpression effectively inhibited ITGAvB3-dependent FAK activation, restoring sensitivity to AUY922. Conclusion The synergistic co-targeting of FAK and HSP90 attenuated the growth of ITGAvB3-induced AUY922-resistant KRAS-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome acquired AUY922-resistance in KRAS-mutant NSCLC.
Collapse
Affiliation(s)
- Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hannah Yang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun-Min Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eunjin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yujin Jo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Hoon Lee
- Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Wanlim Kim
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Center for Advancing Cancer Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
De Santis C, Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. Int J Mol Sci 2021; 22:ijms22147359. [PMID: 34298978 PMCID: PMC8305730 DOI: 10.3390/ijms22147359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Let-7d is a microRNA of the conserved let-7 family that is dysregulated in female malignancies including breast cancer, ovarian cancer, endometrial cancer, and cervical cancer. Moreover, a dysregulation is observed in endometriosis and pregnancy-associated diseases such as preeclampsia and fetal growth restriction. Let-7d expression is regulated by cytokines and steroids, involving transcriptional regulation by OCT4, MYC and p53, as well as posttranscriptional regulation via LIN28 and ADAR. By downregulating a wide range of relevant mRNA targets, let-7d affects cellular processes that drive disease progression such as cell proliferation, apoptosis (resistance), angiogenesis and immune cell function. In an oncological context, let-7d has a tumor-suppressive function, although some of its functions are context-dependent. Notably, its expression is associated with improved therapeutic responses to chemotherapy in breast and ovarian cancer. Studies in mouse models have furthermore revealed important roles in uterine development and function, with implications for obstetric diseases. Apart from a possible utility as a diagnostic blood-based biomarker, pharmacological modulation of let-7d emerges as a promising therapeutic concept in a variety of female disease conditions.
Collapse
MESH Headings
- Aging
- Animals
- Biomarkers
- Biomarkers, Tumor
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Female
- Fertility/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/genetics
- Genital Neoplasms, Female/drug therapy
- Genital Neoplasms, Female/genetics
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/physiology
- Molecular Targeted Therapy
- Pregnancy
- Pregnancy Complications/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
Collapse
|
10
|
Meng F, Han X, Min Z, He X, Zhu S. Prognostic signatures associated with high infiltration of Tregs in bone metastatic prostate cancer. Aging (Albany NY) 2021; 13:17442-17461. [PMID: 34229299 PMCID: PMC8312432 DOI: 10.18632/aging.203234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Metastatic cancer especially bone metastasis (BM) is the lethal end-stage of castration-resistant prostate cancer (CRPC). To understand the possible molecular mechanisms underlying the development of the distant metastasis is of potential clinical value. We sought to identify differentially expressed genes between patient-matched primary and bone metastatic CRPC tumors. Functional enrichment, protein-protein interaction networks, and survival analysis of DEGs were performed. DEGs with a prognostic value considered as candidate genes were evaluated, followed by genetic analysis of tumor infiltrating immune cells based on Wilcoxon test and immunofluorescence identification. Expression profiles analysis showed that 381 overlapping genes were screened as differentially expressed genes (DEGs), of which 16 DEGs were randomly selected to be validated and revealed that most of these genes showed a transcriptional profile similar to that seen in the datasets (Pearson’s r = 0.76). Six core genes were found to be involved in regulation of extracellular matrix receptor interaction and chemotactic activity, and four of them were significantly correlated with the survival of PCa patients with bone metastases. Immune infiltration analysis showed that the expressions levels of COL3A1, RAC1, FN1, and SDC2 in CD4+T cells were significantly higher than those in tumor cells, especially regulatory T cell infiltration was significantly increased in BM tumors. We analyzed gene expression signatures specifically associated with the development of bone metastases of CRPC patients. Characterization of genes associated with BM of mCRPC is critical for identification of predictive biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Fanjing Meng
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xu Han
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhixue Min
- Department of Pathology, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xuehui He
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sha Zhu
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|