1
|
Wu Y, Li J, Liu M, Gao R, Xie Y, Li H, Li L. The active ingredients and targets of Kouqiangjie formula on periodontitis: a multi-approach study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03942-1. [PMID: 40163153 DOI: 10.1007/s00210-025-03942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
Periodontitis (PD) is a complex oral inflammatory disease with diverse pathogenic factors, demanding effective multi-target therapeutic approaches. Traditional Chinese Medicine (TCM) formulations, like the Kouqiangjie Formula (KQJF), hold potential as alternative therapies due to their multiple pharmacological effects. This study comprehensively investigated the key active ingredients and molecular targets of KQJF in treating PD through a combination of network pharmacology, machine learning, Mendelian randomization (MR), and experimental validation. The active components and targets of KQJF were identified via the TCMSP and HERB databases, while PD-related genes were sourced from GeneCards, CTD, and DisGeNET. Gene expression data from GEO datasets enabled differential expression analysis. Machine learning models, including Random Forest (RF) and Support Vector Machine (SVM), were employed to evaluate the diagnostic potential of gene sets. Molecular docking was utilized to assess the interactions between active ingredients and targets, and MR analysis was conducted to explore the causal relationships with PD. Experimental validation was carried out using a rat model. The results indicated that KQJF consists of 193 active compounds that target 561 proteins, with a significant overlap of 272 targets related to PD. Key compounds such as luteolin, linolenic acid, and naringenin were identified. The SVM model demonstrated excellent predictive performance, with an AUC of 0.954. MR analysis revealed a significant causal effect of the CASP3 gene on the risk of PD (OR = 1.595, p = 0.015). Experimental findings showed that these compounds could reduce the expression of CASP3 and improve the integrity of periodontal tissues. In conclusion, luteolin, linolenic acid, and naringenin are the core compounds in KQJF, and CASP3 is an important target. This study emphasizes the great potential of KQJF for PD treatment and provides a solid data base for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ranran Gao
- Department of Gynaecology, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Huijing Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Shierqiao Rd., Chengdu, 610072, PR China.
| |
Collapse
|
2
|
Ma S, He H, Ren X, Chen R, Zhao R, Dong K, Wei C. Luteolin ameliorates periodontitis by modulating mitochondrial dynamics and macrophage polarization via the JAK2/STAT3 pathway. Int Immunopharmacol 2025; 144:113612. [PMID: 39579538 DOI: 10.1016/j.intimp.2024.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Periodontal disease (PD) is a chronic inflammatory condition affecting oral and systemic health. Luteolin (LUT), a natural flavonoid, has shown anti-inflammatory effects, but its therapeutic potential and mechanisms in PD remain unclear. OBJECTIVE This study aimed to investigate the effects of LUT on PD, focusing on its impact on mitochondrial dynamics, macrophage polarization, and the JAK2/STAT3 signaling pathway. METHODS A combination of network pharmacology analysis and in vivo and in vitro experiments was employed. The efficacy of LUT was evaluated using a ligature-induced rat PD model and LPS-stimulated THP-1-derived macrophages. Key assessments included micro-CT for bone loss, flow cytometry for macrophage polarization, and Western blot for pathway analysis. RESULTS LUT significantly reduced alveolar bone loss and enhanced M2 macrophage polarization, as indicated by increased CD206 and Arg1 expression. Additionally, it improved mitochondrial function by reducing ROS and restoring membrane potential, decreasing mitochondrial fission, and promoting mitochondrial fusion. Mechanistically, LUT inhibited JAK2/STAT3 phosphorylation, promoting anti-inflammatory effects. CONCLUSION These findings suggest that LUT ameliorates periodontal inflammation and bone loss by modulating mitochondrial dynamics, promoting M2 macrophage polarization, and suppressing the JAK2/STAT3 signaling pathway. This highlights LUT as a promising multitarget candidate for PD treatment.
Collapse
Affiliation(s)
- SiJia Ma
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| | - Rongkun Chen
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Ruoyu Zhao
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Keyu Dong
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Chenxi Wei
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| |
Collapse
|
3
|
Tong X, Fu X, Gong A, Yu G, Chen N, Chen B, Gu J, Liu Z. Effect of Luteolin on cadmium-inhibited bone growth via suppressing osteoclastogenesis in laying chickens. J Anim Sci 2025; 103:skaf033. [PMID: 39921628 PMCID: PMC11912829 DOI: 10.1093/jas/skaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Luteolin (Lut) is a flavonoid derived from several plant sources. Cadmium (Cd) is a widespread environmental contaminant and potential toxin with detrimental effects on animal health. However, the effect of Lut on Cd-induced inhibition of bone growth in laying chickens remains unclear. This study investigates the effects of Lut on Cd-induced inhibition of bone growth in the femur and tibia of laying chickens. A total of sixty 1-d-old green-eggshell yellow feather laying chickens were randomly assigned to 4 groups after a 5-d acclimation period: basal diet (Con), cadmium chloride (CdCl2, Cd), Lut, and Lut + Cd. Bone microstructure, serum biomarkers of bone remodeling, the levels of Cd, calcium (Ca), phosphorus (P), and trace metal elements were assessed using the micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA), and microwave digestion, respectively. Bone remodeling biomarkers, late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1), as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and protein kinase B (Akt), were quantified using the qRT-PCR and western blot. The results indicated that Lut effectively mitigated Cd-induced bone mass loss compared to the Cd group, resulting in increased bone volume (BV), bone surface/BV (BS/BV), connectivity density (Conn.Dn), and the length and weight of the femur and tibia in laying chickens. Mechanistically, compared to the Cd group, Lut restored the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) in serum and bone tissue, enhanced the expression of bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and Osterix (OSX), while reducing the levels of Ca, Cd, and alkaline phosphatase (ALP) activity, as well as the expression of osteopontin (OPN), c-Fos, osteoclast stimulatory-transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase, cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), LAMTOR1, and the phosphorylation of AMPKα and Akt. Therefore, Lut alleviates Cd-induced damage to the femur and tibia of chickens by promoting osteogenesis and inhibiting osteoclastogenesis, positioning Lut as a potential therapeutic plant extract for enhancing bone growth in laying chickens.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Xiaohui Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Anqing Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Gengsheng Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Naineng Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Bing Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
4
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
5
|
Venkatesan LS, Sathishkumar P. Therapeutic advantages of natural drug luteolin for periodontal disease treatment. Nat Prod Res 2024:1-2. [PMID: 39340239 DOI: 10.1080/14786419.2024.2408399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Affiliation(s)
- Lekha Sree Venkatesan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Caserta S, Stagno F, Gangemi S, Allegra A. Highlights on the Effects of Non-Coding RNAs in the Osteonecrosis of the Jaw. Int J Mol Sci 2024; 25:1598. [PMID: 38338876 PMCID: PMC10855359 DOI: 10.3390/ijms25031598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Osteonecrosis of the jaw is the progressive loss and destruction of bone affecting the maxilla or mandible in patients treated with antiresorptive and antiangiogenic agents without receiving prior radiation therapy. The pathogenesis involves the inflammatory pathway of receptor activator of nuclear factor NF-kB ligand and the macrophage colony-stimulating factor, essential for osteoclast precursors survival and proliferation and acting through its receptor c-Fms. Evidence has shown the role of non-coding RNAs in the pathogenesis of osteonecrosis of the jaw and this finding might be useful in diagnosis since these small RNAs could be considered as biomarkers of apoptotic activity in bone. Interestingly, it has been proved that miR-29 and miR-31-5p, acting on specific targets such as CALCR and RhoA, promote programmed-cell death and consequently the necrosis of bone tissue. Specific long non-coding RNAs, instead, have been detected both at reduced levels in patients with multiple myeloma and osteonecrosis, and associated with suppression of osteoblast differentiation, with consequences in the progression of mandible lesions. Among non-coding genic material, circular RNAs have the capability to modify the expression of specific mRNAs responsible for the inhibition of bisphosphonates activity on osteoclastogenesis.
Collapse
Affiliation(s)
- Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Fabio Stagno
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|
7
|
Guo Y, Kitamoto S, Caballero-Flores G, Kim Y, Watanabe D, Sugihara K, Núñez G, Alteri CJ, Inohara N, Kamada N. Oral pathobiont Klebsiella chaperon usher pili provide site-specific adaptation for the inflamed gut mucosa. Gut Microbes 2024; 16:2333463. [PMID: 38545880 PMCID: PMC10984132 DOI: 10.1080/19490976.2024.2333463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The ectopic gut colonization by orally derived pathobionts has been implicated in the pathogenesis of various gastrointestinal diseases, including inflammatory bowel disease (IBD). For example, gut colonization by orally derived Klebsiella spp. has been linked to IBD in mice and humans. However, the mechanisms whereby oral pathobionts colonize extra-oral niches, such as the gut mucosa, remain largely unknown. Here, we performed a high-density transposon (Tn) screening to identify genes required for the adaptation of an oral Klebsiella strain to different mucosal sites - the oral and gut mucosae - at the steady state and during inflammation. We find that K. aerogenes, an oral pathobiont associated with both oral and gut inflammation in mice, harbors a newly identified genomic locus named "locus of colonization in the inflamed gut (LIG)" that encodes genes related to iron acquisition (Sit and Chu) and host adhesion (chaperon usher pili [CUP] system). The LIG locus is highly conserved among K. aerogenes strains, and these genes are also present in several other Klebsiella species. The Tn screening revealed that the LIG locus is required for the adaptation of K. aerogenes in its ectopic niche. In particular, we determined K. aerogenes employs a CUP system (CUP1) present in the LIG locus for colonization in the inflamed gut, but not in the oral mucosa. Thus, oral pathobionts likely exploit distinct adaptation mechanisms in their ectopically colonized intestinal niche compared to their native niche.
Collapse
Affiliation(s)
- Yijie Guo
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Gustavo Caballero-Flores
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daisuke Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kohei Sugihara
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Gabriel Núñez
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Naohiro Inohara
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Elhaieg A, Farag A, Elfadadny A, Yokoi A, Hendawy H, Mandour AS, Tanaka R. Effect of experimental periodontitis on cardiac functions: a comprehensive study using echocardiography, hemodynamic analysis, and histopathological evaluation in a rat model. Front Vet Sci 2023; 10:1327484. [PMID: 38179330 PMCID: PMC10764594 DOI: 10.3389/fvets.2023.1327484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Periodontitis is a prevalent and severe dental condition characterized by the gradual degradation of the bone surrounding the teeth. Over the past two decades, numerous epidemiological investigations have suggested a potential link between periodontitis and cardiovascular disease. However, the complex mechanistic relationship between oral health issues and cardiovascular disorders remains unclear. Aim This study aimed to explore comprehensively the cardiac function through various methods, including conventional echocardiography, intraventricular pressure gradient (IVPG) analysis, speckle tracking echocardiography (STE), and hemodynamics analysis. Methods Ligature-induced periodontitis was established in a group of rats while the second group served as sham. The successful establishment of the periodontitis model was confirmed through staining and radiographic examination of the affected mandibles. Results X-ray films and methylene blue staining revealed alveolar bone resorption in the affected first molar in the model rats, confirming the successful induction of periodontitis. The rats with periodontitis displayed a decrease in ejection fraction compared to the sham group, accompanied by a decrease in mid-to-apical IVPG and mid IVPG. Lower values of strain rate were recorded in the apical segment of the septum, the middle segment of the septum, and the basal segment of the lateral free wall in the periodontitis group, which was associated with histopathological examination showing some degree of myocardial tissue damage. Conversely, rats with periodontitis showed an increase in heart rate, end-systolic volume, and arterial elastance when compared to the sham rats. However, they also exhibited a decrease in stroke work, stroke volume, cardiac output, and end-systolic pressure. Conclusion This study suggests that experimental periodontitis may lead to cardiac dysfunction especially compromised systolic function and myocardial relaxation, potentially indicating an increased risk of cardiovascular events in clinical periodontitis cases. The comprehensive assessment of cardiac function, hemodynamics, and histopathological evaluation underscores the profound impact of periodontitis on heart functions within this specific experimental model.
Collapse
Affiliation(s)
- Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhour, Egypt
| | - Aimi Yokoi
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
9
|
Arampatzis AS, Pampori A, Droutsa E, Laskari M, Karakostas P, Tsalikis L, Barmpalexis P, Dordas C, Assimopoulou AN. Occurrence of Luteolin in the Greek Flora, Isolation of Luteolin and Its Action for the Treatment of Periodontal Diseases. Molecules 2023; 28:7720. [PMID: 38067450 PMCID: PMC10707704 DOI: 10.3390/molecules28237720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Higher plants possess the ability to synthesize a great number of compounds with many different functions, known as secondary metabolites. Polyphenols, a class of flavonoids, are secondary metabolites that play a crucial role in plant adaptation to both biotic and abiotic environments, including UV radiation, high light intensity, low/high temperatures, and attacks from pathogens, among others. One of the compounds that has received great attention over the last few years is luteolin. The objective of the current paper is to review the extraction and detection methods of luteolin in plants of the Greek flora, as well as their luteolin content. Furthermore, plant species, crop management and environmental factors can affect luteolin content and/or its derivatives. Luteolin exhibits various biological activities, such as cytotoxic, anti-inflammatory, antioxidant and antibacterial ones. As a result, luteolin has been employed as a bioactive molecule in numerous applications within the food industry and the biomedical field. Among the different available options for managing periodontitis, dental care products containing herbal compounds have been in the spotlight owing to the beneficial pharmacological properties of the bioactive ingredients. In this context, luteolin's anti-inflammatory activity has been harnessed to combat periodontal disease and promote the restoration of damaged bone tissue.
Collapse
Affiliation(s)
- Athanasios S. Arampatzis
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Aspasia Pampori
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Eleftheria Droutsa
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Maria Laskari
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (C.D.)
| | - Panagiotis Karakostas
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (L.T.)
| | - Lazaros Tsalikis
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (L.T.)
| | - Panagiotis Barmpalexis
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Dordas
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.L.); (C.D.)
| | - Andreana N. Assimopoulou
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.A.); (A.P.); (E.D.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| |
Collapse
|
10
|
Embaby EM, Saleh RM, Marghani BH, Barakat N, Awadin W, Elshal MF, Ali IS, Abu-Heakal N. The combined effect of zinc oxide nanoparticles and milrinone on acute renal ischemia/reperfusion injury in rats: Potential underlying mechanisms. Life Sci 2023; 323:121435. [PMID: 37068707 DOI: 10.1016/j.lfs.2023.121435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 04/19/2023]
Abstract
AIM To investigate the efficacy of zinc oxide nanoparticles (ZnO-NPs) and/or milrinone (MIL) on renal ischemia/reperfusion injury (I/RI) in rats and their possible underlying mechanisms. MATERIALS AND METHODS Forty-eight adult male Sprague-Dawley albino rats were randomly assigned into six equal-sized groups (n = 8): normal control, sham-operated, I/R group (45 min/24 h), ZnO-NPs group (10 mg/Kg i.p.), MIL group (0.5 mg/Kg i.p.), and ZnO-NPs + MIL group in the same previous doses. KEY FINDINGS In comparison to the I/R-operated group, administration of either ZnO-NPs or MIL significantly decreased serum creatinine and urea concentrations, and renal vascular permeability (p < 0.05). The oxidative stress was significantly declined, as evidenced by increased GPx, CAT, and SOD activities and decreased MDA and NO concentrations. Renal expressions of TNF-α, NF-κB, KIM-1, NGAL, and caspase-3 decreased significantly, while Nrf2 increased significantly. Histopathology investigation revealed improvement with minimal renal lesions and fibrosis after ZnO-NPs or MIL treatments. The combined treatments synergistically improved the studied parameters more than either treatment alone. These findings were validated by molecular modeling, which revealed that MIL inhibited TNF-α, NF-kB, caspase-3, KIM-1 and NGAL. SIGNIFICANCE Both ZnO-NPs and MIL exerted cytoprotective effects against acute renal I/RI, and a combination of both was found to be even more effective. This renoprotective effect is suggested to be mediated through activation of Nrf2 and the prevention of the NF-κB activation-induced oxidative stress and inflammation, which may strengthen the potential role of ZnO-NPs or MIL in renal I/RI protection during surgical procedures.
Collapse
Affiliation(s)
- Eman M Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Biochemistry, Physiology and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, South of Sinaa 46612, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F Elshal
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| | - Islam S Ali
- Basic Science Department, Delta University for Science and Technology, Gamasa, Dakahlia, Egypt
| | - Nabil Abu-Heakal
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
11
|
Huang L, Kim MY, Cho JY. Immunopharmacological Activities of Luteolin in Chronic Diseases. Int J Mol Sci 2023; 24:ijms24032136. [PMID: 36768462 PMCID: PMC9917216 DOI: 10.3390/ijms24032136] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Flavonoids have been shown to have anti-oxidative effects, as well as other health benefits (e.g., anti-inflammatory and anti-tumor functions). Luteolin (3', 4', 5,7-tetrahydroxyflavone) is a flavonoid found in vegetables, fruits, flowers, and herbs, including celery, broccoli, green pepper, navel oranges, dandelion, peppermint, and rosemary. Luteolin has multiple useful effects, especially in regulating inflammation-related symptoms and diseases. In this paper, we summarize the studies about the immunopharmacological activity of luteolin on anti-inflammatory, anti-cardiovascular, anti-cancerous, and anti-neurodegenerative diseases published since 2018 and available in PubMed or Google Scholar. In this review, we also introduce some additional formulations of luteolin to improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
12
|
Preparation and Evaluation of Amorphous Solid Dispersions for Enhancing Luteolin's Solubility in Simulated Saliva. Polymers (Basel) 2022; 15:polym15010169. [PMID: 36616519 PMCID: PMC9824002 DOI: 10.3390/polym15010169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Luteolin (LUT), a bioactive flavonoid, possesses various pharmacological properties, including antioxidant, antimicrobial, anti-allergic, cardio-protective, and anti-cancer activity. Among them, LUT's administration for the treatment of periodontal disease is very promising. However, its low water solubility magnifies the challenge of formulating LUT into an effective dosage form. In this vein, the aim of the present study examines the preparation of amorphous solid dispersions (ASD) for the solubility improvement of LUT in saliva. At first, the physicochemical properties of the active pharmaceutical ingredient (API) were studied before the selection of the most suitable ASD matrix/carrier. For this reason, six commonly used polymeric ASD matrix/carriers (namely, povidone, PVP; copovidone, coPVP; hydroxypropyl cellulose, HPC-SL; hydroxypropyl methyl cellulose acetate succinate, HPMC-AS; Eudragit® RS, Eud-RS; and Soluplus®, SOL) were screened via the film casting method, as to whether they could suspend the drug's recrystallization. The most promising matrix/carriers were then evaluated, based on their ability to inhibit LUT's precipitation after its solubilization, via the solvent shift method. Based on both screening methods, it was determined that PVP was the most promising matrix/carrier for the preparation of LUT's ASDs. Hence, in a further step, after the successful testing of components' miscibility, LUT-PVP ASDs were prepared via the solvent evaporation method. These systems (examined via powder X-ray diffractometry, pXRD) showed full API amorphization immediately after preparation and excellent physical stability (since they were stable after 3 months of storage). The study of LUT-PVP ASD's ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectra demonstrated strong H-bonds between the molecules of the drug and the matrix/carrier, while molecular dynamics (MD) simulations were able to shed light on these drug-matrix/carrier interactions, at a molecular level. Finally, in vitro dissolution studies in simulated saliva proved that the prepared ASDs were able to significantly enhance LUT's dissolution profile. Hence, according to findings of the present work, the preparation of LUT-ASDs utilizing PVP as the polymeric matrix/carrier is regarded as a highly promising technique for the improvement of API's solubility in the oral cavity.
Collapse
|
13
|
Casili G, Lanza M, Filippone A, Cucinotta L, Paterniti I, Repici A, Capra AP, Cuzzocrea S, Esposito E, Campolo M. Dimethyl Fumarate (DMF) Alleviated Post-Operative (PO) Pain through the N-Methyl-d-Aspartate (NMDA) Receptors. Antioxidants (Basel) 2022; 11:antiox11091774. [PMID: 36139848 PMCID: PMC9495385 DOI: 10.3390/antiox11091774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The management of post-operative (PO) pain has generally been shown to be inadequate; therefore, acquiring a novel understanding of PO pain mechanisms would increase the therapeutic options available. There is accumulating evidence to implicate N-methyl-d-aspartate (NMDA) receptors in the induction and maintenance of central sensitization during pain states by reinforcing glutamate sensory transmission. It is known that DMF protects from oxidative glutamate toxicity. Therefore, NMDA receptor antagonists have been implicated in peri-operative pain management. Recent advances demonstrated that dimethyl fumarate (DMF), a non-opioid and orally bioavailable drug, is able to resolve neuroinflammation through mechanisms that drive nociceptive hypersensitivity. Therefore, in this study, we evaluated the role of DMF on pain and neuroinflammation in a mouse model of PO pain. An incision of the hind paw was performed, and DMF at two different doses (30 and 100 mg/kg) was administered by oral gavage for five consecutive days. Mechanical allodynia, thermal hyperalgesia and locomotor dysfunction were evaluated daily for five days after surgery. Mice were sacrificed at day 7 following PO pain induction, and hind paw and lumbar spinal cord samples were collected for histological and molecular studies. DMF administration significantly reduced hyperalgesia and allodynia, alleviating motor disfunction. Treatment with DMF significantly reduced histological damage, counteracted mast cell activation and reduced the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) inflammatory pathway, in addition to downregulating tumor necrosis factor-α (TNF-α), Interleukin-1β (Il-1β) and Il-4 expression. Interestingly, DMF treatment lowered the activation of NMDA receptor subtypes (NR2B and NR1) and the NMDA-receptor-interacting PDZ proteins, including PSD93 and PSD95. Furthermore, DMF interfered with calcium ion release, modulating nociception. Thus, DMF administration modulated PO pain, managing NMDA signaling pathways. The results suggest that DMF positively modulated persistent nociception related to PO pain, through predominantly NMDA-receptor-operated calcium channels.
Collapse
|
14
|
Supplementation with SCFAs Re-Establishes Microbiota Composition and Attenuates Hyperalgesia and Pain in a Mouse Model of NTG-Induced Migraine. Int J Mol Sci 2022; 23:ijms23094847. [PMID: 35563235 PMCID: PMC9100093 DOI: 10.3390/ijms23094847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Migraine is a common brain-disorder that affects 15% of the population. Converging evidence shows that migraine is associated with gastrointestinal disorders. However, the mechanisms underlying the interaction between the gut and brain in patients with migraine are not clear. In this study, we evaluated the role of the short-chain fatty acids (SCFAs) as sodium propionate (SP) and sodium butyrate (SB) on microbiota profile and intestinal permeability in a mouse model of migraine induced by nitroglycerine (NTG). The mice were orally administered SB and SP at the dose of 10, 30 and 100 mg/kg, 5 min after NTG intraperitoneal injections. Behavioral tests were used to evaluate migraine-like pain. Histological and molecular analyses were performed on the intestine. The composition of the intestinal microbiota was extracted from frozen fecal samples and sequenced with an Illumina MiSeq System. Our results demonstrated that the SP and SB treatments attenuated hyperalgesia and pain following NTG injection. Moreover, SP and SB reduced histological damage in the intestine and restored intestinal permeability and the intestinal microbiota profile. These results provide corroborating evidence that SB and SP exert a protective effect on central sensitization induced by NTG through a modulation of intestinal microbiota, suggesting the potential application of SCFAs as novel supportive therapies for intestinal disfunction associated with migraine.
Collapse
|
15
|
Basilicata M, Di Lauro M, Campolattano V, Marrone G, Celotto R, Mitterhofer AP, Bollero P, Di Daniele N, Noce A. Natural Bioactive Compounds in the Management of Oral Diseases in Nephropathic Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1665. [PMID: 35162688 PMCID: PMC8835582 DOI: 10.3390/ijerph19031665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/27/2023]
Abstract
Among the chronic non-communicable degenerative diseases (CDNCDs), chronic kidney disease (CKD) represents a global public health problem. Recent studies demonstrate a mutual cause-effect relationship between CKD and oral diseases, in which the presence of one induces the onset and faster progression of the other. In particular, the oral cavity alterations more frequent in CKD patients are: chronic periodontitis diseases, bone lesions, oral infections, and oral cancer lesions. Currently, a standardized therapy for the treatment of oral diseases is lacking. For this reason, natural bioactive compounds (NBCs), characterized by several health effects, such as antioxidant, antimicrobial, anti-inflammatory and anti-cancer actions, represent a new possible adjuvant therapy in the management of these pathological conditions. Among NBCs, polyphenols play a leading role due to positive modulation of oral microbiota, preventing and correcting oral dysbiosis. Moreover, these compounds exert anti-inflammatory effects, such as inhibiting the production of pro-inflammatory cytokines and the expression of cycloxigenase-2. In this light, the formulation of a new mouthwash/gel/gingival paste, with a high content of polyphenols in association with NBCs characterized by antimicrobial action, could represent a future therapy of oral disease in CKD patients.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy;
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (N.D.D.)
| | - Vincenzo Campolattano
- UOSD Special Care Dentistry, Department of Dentistry and Dental Prosthesis, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (N.D.D.)
| | - Roberto Celotto
- Department of Cardiovascular Disease, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Anna Paola Mitterhofer
- Nephrology and Dialysis Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy;
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (N.D.D.)
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (N.D.D.)
| |
Collapse
|
16
|
Scuderi SA, Casili G, Filippone A, Lanza M, Basilotta R, Giuffrida R, Munaò S, Colarossi L, Capra AP, Esposito E, Paterniti I. Beneficial effect of KYP-2047, a propyl-oligopeptidase inhibitor, on oral squamous cell carcinoma. Oncotarget 2021; 12:2459-2473. [PMID: 34917264 PMCID: PMC8664393 DOI: 10.18632/oncotarget.28147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell-carcinoma (OSCC) is a common cancer which arises from the alveolar ridge, buccal mucosa, and tongue. Among OSCC, the incidence of tongue squamous cell-carcinoma (TSCC) is growing all over the world. Oral carcinogenesis has been linked to genetic mutations, chromosomal aberrations and viral factors. Apoptosis and angiogenesis play a key role in the development of oral cancer. Therefore, it is very important discover new therapeutic strategies to counteract oral cancer progression. This study aimed to investigate the effect of KYP-2047 in an in vitro model of TSCC and in vivo CAL27-xenograft model. Our results demonstrated that KYP-2047 was able to reduce TSCCs cell viability at the concentrations of 50 μM and 100 μM. Additionally, KYP-2047 was able to increase Bax, Bad and caspase-3 expression, whereas Bcl-2 and p53 expression were reduced. Moreover, KYP-2047 significantly reduced vascular-endothelial-growth-factor (VEGF) and endothelial-nitric-oxide-synthase (eNOS) expression. In the vivo xenograft model, KYP-2047 at doses of 1 and 5 mg/kg significantly reduced tumor burden and tumor weight, decreasing also angiogenesis markers VEGF and eNOS. Moreover, KYP-2047 increased Bax and reduced Bcl2 expressions. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract tongue oral-cancer growth, thanks its abilities to modulate angiogenesis and apoptosis pathways.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | | | - Stefania Munaò
- Istituto Oncologico del Mediterraneo, Viagrande 95029, CT, Italy
| | | | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| |
Collapse
|
17
|
Casili G, Ardizzone A, Basilotta R, Lanza M, Filippone A, Paterniti I, Esposito E, Campolo M. The Protective Role of Prolyl Oligopeptidase (POP) Inhibition in Kidney Injury Induced by Renal Ischemia-Reperfusion. Int J Mol Sci 2021; 22:11886. [PMID: 34769337 PMCID: PMC8584363 DOI: 10.3390/ijms222111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson's trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-β and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31-98166 Messina, Italy; (G.C.); (A.A.); (R.B.); (M.L.); (A.F.); (I.P.); (M.C.)
| | | |
Collapse
|
18
|
Campolo M, Lanza M, Paterniti I, Filippone A, Ardizzone A, Casili G, Scuderi SA, Puglisi C, Mare M, Memeo L, Cuzzocrea S, Esposito E. PEA-OXA Mitigates Oxaliplatin-Induced Painful Neuropathy through NF-κB/Nrf-2 Axis. Int J Mol Sci 2021; 22:ijms22083927. [PMID: 33920318 PMCID: PMC8069952 DOI: 10.3390/ijms22083927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics, such as oxaliplatin (L-OHP). The aim of the present work was to evaluate the potential beneficial effects of 2-pentadecyl-2-oxazoline (PEA-OXA) in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). OIPN was induced by an intraperitoneally injection of L-OHP in rats on five consecutive days (D0-4) for a final cumulative dose of 10 mg/kg. PEA-OXA and ultramicronized palmitoylethanolamide (PEAum), both 10 mg/kg, were given orally 15-20 min prior (L-OHP) and sacrifice was made on day 25. Our results demonstrated that PEA-OXA, more than PEAum, reduced the development of hypersensitivity in rats; this was associated with the reduction in hyperactivation of glia cells and the increased production of proinflammatory cytokines in the dorsal horn of the spinal cord, accompanied by an upregulation of neurotrophic factors in the dorsal root ganglia (DRG). Moreover, we showed that PEA-OXA reduced L-OHP damage via a reduction in NF-κB pathway activation and a modulation of Nrf-2 pathways. Our findings identify PEA-OXA as a therapeutic target in chemotherapy-induced painful neuropathy, through the biomolecular signaling NF-κB/Nrf-2 axis, thanks to its abilities to counteract L-OHP damage. Therefore, we can consider PEA-OXA as a promising adjunct to chemotherapy to reduce chronic pain in patients.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | | | - Marzia Mare
- Istituto Oncologico Del Mediterraneo Spa, Via Penninazzo 7, 95029 Viagrande, Italy; (M.M.); (L.M.)
| | - Lorenzo Memeo
- Istituto Oncologico Del Mediterraneo Spa, Via Penninazzo 7, 95029 Viagrande, Italy; (M.M.); (L.M.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.C.); (M.L.); (I.P.); (A.F.); (A.A.); (G.C.); (S.A.S.); (S.C.)
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
19
|
Lanza M, Casili G, Campolo M, Paterniti I, Colarossi C, Mare M, Giuffrida R, Caffo M, Esposito E, Cuzzocrea S. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci 2021; 11:brainsci11040466. [PMID: 33917013 PMCID: PMC8067679 DOI: 10.3390/brainsci11040466] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). Microglia substantially contribute to the growth and invasion of tumor mass in brain tumors including glioblastoma (GB). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors. Large numbers of glioma associated microglia and macrophages (GAMs) can accumulate within the tumor where they appear to have an important role in prognosis. GAMs constitute the largest portion of tumor infiltrating cells, contributing up to 30% of the entire glioma mass and upon interaction with neoplastic cells. GAMs acquire a unique phenotype of activation, including both M1 and M2 specific markers. It has been demonstrated that microglia possess a dual role: on one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Concluding, as microglia significantly may contribute to glioma biology, favoring tumor growth and invasiveness, these cells represent a valuable alternative/additional target for the development of more effective treatments for gliomas.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Cristina Colarossi
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | | | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| |
Collapse
|
20
|
Pharmacological Studies on Traditional Plant-Based Remedies. Biomedicines 2021; 9:biomedicines9030315. [PMID: 33808651 PMCID: PMC8003496 DOI: 10.3390/biomedicines9030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
For years, plant-based remedies have been used as a traditional practice to treat and prevent a broad range of diseases [...].
Collapse
|
21
|
Li B, Du P, Du Y, Zhao D, Cai Y, Yang Q, Guo Z. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci 2021; 269:119008. [PMID: 33434535 DOI: 10.1016/j.lfs.2020.119008] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease related to intestinal dysbiosis. Luteolin has been reported to reduce inflammation. However, it remains unclear whether luteolin ameliorates UC and regulates gut microbiota. In this study, we investigated the effects of luteolin on colonic structure and inflammation of dextran sulfate sodium (DSS)-induced rats using hematoxylin-eosin staining, immunohistochemistry and enzyme-linked immunosorbent assay and evaluated the effects of luteolin on gut microbiota using 16S rDNA sequencing. We found that luteolin treatment significantly reduced colonic damage, and inhibited colonic inflammation in UC rats, evidenced by the decreased levels of NF-κB, IL-17 and IL-23 in UC rats and the increased level of PPAR-γ. In addition, the 16S rDNA sequencing analysis revealed that luteolin treatment could alter diversity and composition of gut microbiota in UC rats. Lactobacillus, Bacteroides, Roseburia and Butyricicoccus were dominant genera in the luteolin group. Luteolin treatment reduced DSS-induced increased ratios of Lactobacillus and Prevotella_9. Furthermore, KEGG analysis revealed that gut microbiota was mainly related to DNA repair and recombination proteins, ribosome, purine metabolism, peptidases, and pyrimidine metabolism. In conclusion, our results revealed that luteolin could alleviate DSS-induced colitis in rats, and gut microbiota had the potential to serve as promising biomarkers for uncovering the mechanism by which luteolin improved UC.
Collapse
Affiliation(s)
- Bolin Li
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pengli Du
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yao Du
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Danyang Zhao
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanru Cai
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qian Yang
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - Zijing Guo
- Department of Hematology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Ardizzone A, Fusco R, Casili G, Lanza M, Impellizzeri D, Esposito E, Cuzzocrea S. Effect of Ultra-Micronized-Palmitoylethanolamide and Acetyl-l-Carnitine on Experimental Model of Inflammatory Pain. Int J Mol Sci 2021; 22:1967. [PMID: 33671213 PMCID: PMC7922157 DOI: 10.3390/ijms22041967] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Palmitoylethanolamide (PEA), a fatty acid amide, has been widely investigated for its analgesic and anti-inflammatory properties. The ultra-micronized formulation of PEA (um-PEA), that has an enhanced rate of dissolution, is extensively used. Acetyl-l-carnitine (LAC), employed for the treatment of neuropathic pain in humans, is able to cause analgesia by up-regulating type-2 metabotropic glutamate (mGlu2) receptors. In the present study, we tested different associations of um-PEA, LAC and non-micronized PEA (non-m-PEA) in a rat model of carrageenan (CAR)-induced paw edema. Intraplantar injection of CAR into the hind paw of animals caused edema, thermal hyperalgesia, accumulation of infiltrating inflammatory cells and augmented myeloperoxidase (MPO) activity. All these parameters were decreased in a significantly manner by oral administration of a compound constituted by a mixture of um-PEA and LAC in relation 1:1 (5 mg/kg), but not with the association of single compounds administered one after the other. These findings showed the superior anti-inflammatory and anti-nociceptive action displayed by oral administration of um-PEA and LAC versus LAC plus, separate but consecutive, um-PEA in the rat paw CAR model of inflammatory pain.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina (ME), Italy; (A.A.); (R.F.); (G.C.); (M.L.); (D.I.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|