1
|
Yadav P, Debnath N, Pradhan D, Mehta PK, Kumar A, Yadav ML, Yadav AK. Probiotic Lactobacillus-Derived Extracellular Vesicles: Insights Into Disease Prevention and Management. Mol Nutr Food Res 2025:e70013. [PMID: 40200671 DOI: 10.1002/mnfr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as versatile and promising tools for therapeutic interventions across a spectrum of medical applications. Among these, Lactobacillus-derived extracellular vesicles (LDEVs) have garnered significant attention due to their diverse physiological functions and applications in health advancement. These LDEVs modulate host cell signaling pathways through the delivery of bioactive molecules, including nucleic acids and proteins. The immunomodulatory properties of LDEVs are important, as they have been shown to regulate the balance between pro-inflammatory and anti-inflammatory responses in various diseases. These LDEVs play a crucial role in maintaining gut homeostasis by modulating the composition and function of the gut microbiota, which has implications for health conditions, including inflammatory bowel diseases, metabolic disorders, and neurological disorders. Furthermore, LDEVs hold potential to deliver therapeutic payloads to specific tissues or organs. Engineered LDEVs can be loaded with therapeutic agents such as antimicrobial peptides or nucleic acid-based therapies to treat various diseases. By leveraging the unique properties of LDEVs, researchers can develop innovative strategies for disease prevention, treatment, and overall well-being. Thus, this review aims to provide a comprehensive overview of the therapeutic benefits of LDEVs and their implications for promoting overall well-being.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Diwas Pradhan
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Munna Lal Yadav
- Discovery Research Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
- Department of Zoology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| |
Collapse
|
2
|
Lu D, Ma X, Tao K, Lei H. Advancements in the Pathogenesis, Diagnosis, and Therapeutic Implications of Intestinal Bacteria. Curr Issues Mol Biol 2025; 47:106. [PMID: 39996827 PMCID: PMC11853859 DOI: 10.3390/cimb47020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Intestinal bacteria form one of the most complex microbial communities in the human body, playing a crucial role in maintaining host health and contributing to the development of various diseases. Here, we provide a comprehensive overview of the composition and function of intestinal bacteria, the factors affecting their homeostasis, and their association and mechanisms with a range of diseases (e.g., inflammatory bowel diseases, colorectal cancer, metabolic diseases). Additionally, their advanced potential in disease diagnosis and treatment is highlighted. Therapies, such as chemotherapy, radiotherapy, and immunotherapy, are significantly impacted by intestinal bacteria, with research indicating that bacteria can enhance chemoimmunotherapy efficiency by affecting T cell recruitment and immune cell infiltration. Fecal microbiota transplantation has emerged as a promising option for treating recurrent Clostridium difficile infections and certain metabolic and neurological disorders. Gut bacteria-related serum metabolites serve as non-invasive indicators for diagnosing CRC, while fecal immunochemical tests offer promising applications in CRC screening. Future research is needed to better understand the causal relationships between intestinal bacteria and diseases, develop more precise diagnostic tools, and evaluate the effectiveness and safety of microbiome-targeted therapies in clinical treatment. This study provides deeper insights into the role of intestinal bacteria in human health and disease, providing a scientific basis for innovative therapeutic strategies that have the potential to transform the landscape of healthcare.
Collapse
Affiliation(s)
| | | | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| | - Hongwei Lei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| |
Collapse
|
3
|
Zhang G, Raheem A, Xu X, Fan X, Zhang J, Qin T, Jia L, Yue M, Yang W, Wang L, Wang M, Yin Y, Li Q, Jiang Y, Tian Y, Jiang H, Xin T, Ding J. Immunomodulatory Effects of Lactiplantibacillus plantarum Strain RW1 During Salmonella Infection in Murine Intestinal Epithelial Cells and Dextran Sulfate Sodium-Induced Murine Colitis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10411-3. [PMID: 39625595 DOI: 10.1007/s12602-024-10411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/05/2025]
Abstract
Inflammatory diseases resulting from bacterial infections or inflammatory bowel disease pose significant threats to the health of both animals and humans. Although probiotics have emerged as a crucial preventive and adjunctive therapy for these conditions, the precise mechanisms through which probiotics regulate inflammatory diseases remain incompletely understood. In our previous study, animal-derived Lactiplantibacillus plantarum strain RW1 (L. plantarum RW1) with probiotic potential was isolated and characterized. In this study, the signaling pathway of L. plantarum RW1 inhibiting the inflammatory response of mouse intestinal epithelial cells caused by Salmonella infection was studied. Our results revealed that infection of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC14028 (S. Typhimurium ATCC14028) and Salmonella enterica subsp. enterica serovar Typhimurium strain SL1344 (S. Typhimurium SL1344) significantly increased NF-κB/p65 and TLR4 mRNA levels while decreasing IκB and TLR2 mRNA levels. Whereas L. plantarum RW1 treatment significantly reversed these changes. Western blotting confirmed these findings. Additionally, we explored the protective effects of L. plantarum RW1 in a murine colitis model induced by dextran sulfate sodium (DSS). Treatment with L. plantarum RW1 significantly increased both intestinal length and body weight compared to DSS-treated mice. 16S rRNA sequencing analysis demonstrated that L. plantarum RW1 restored the dysbiosis caused by DSS. Flow cytometry analyses further revealed that L. plantarum RW1 specifically increased regulatory T-cell proportions in Peyer's patches while reducing macrophage and neutrophil proportions, indicating the modulatory effects of L. plantarum RW1 on immune responses in gut-associated lymphatic tissue in the context of colitis. This study sheds light on the intricate interaction between probiotics and hosts, offering valuable insights into their potential application for treating inflammatory diseases in animals and humans.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Abdul Raheem
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xiaofeng Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xuezheng Fan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing, 100193, China
| | - Tong Qin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Min Yue
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, China
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing, 100193, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing, 100193, China
| | - Mingyan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yajie Yin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Qiuchen Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Jiang
- Institute of Veterinary Drug Control, Beijing, China
| | - Ye Tian
- Institute of Veterinary Drug Control, Beijing, China
| | - Hui Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ting Xin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiabo Ding
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Lee H, Lee YH, Hong DK, Mo SJ, Jeon S, Park SD, Shim JJ, Lee JL, Lee JH. Targeting Inflammation and Skin Aging via the Gut-Skin Axis: The Role of Lactiplantibacillus plantarum HY7714-Derived Extracellular Vesicles. Microorganisms 2024; 12:2466. [PMID: 39770669 PMCID: PMC11676968 DOI: 10.3390/microorganisms12122466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Intestinal mucosal tissues are prone to infections, often leading to inflammation. Lactic acid bacteria in the gut can modulate these inflammatory responses, but the interaction between host cells and lactic acid bacteria remains unclear. This study examines how Lactiplantibacillus plantarum HY7714 alleviates intestinal inflammation using gut-on-a-chip technology and in vitro models. Inflammation was induced using a gut-on-a-chip, and changes in cell morphology and barrier function were analyzed. Extracellular vesicles (EVs) derived from HY7714-improved intestinal cell structure repaired damage and restored tight junction integrity. Additionally, they attenuated inflammatory cytokines by regulating the MyD88/mTOR/NF-κB signaling pathway. RNA sequencing revealed downregulation of vicinal oxygen chelate (VOC) family proteins and proline aminopeptidase, both linked to inflammation and extracellular matrix interactions in skin health. Therefore, we explored the effects of HY7714 EVs on skin cells. The findings showed that HY7714 EVs reduced cytotoxicity and downregulated metalloproteinase expression in skin cells exposed to UVB radiation, indicating their potential anti-aging and anti-photoaging properties. These findings suggest that HY7714-derived EVs enhance both intestinal and skin health by reducing inflammation and improving barrier function, with potential benefits for the gut-skin axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Soo-Dong Park
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.L.); (Y.-H.L.); (D.-K.H.); (S.-J.M.); (S.J.); (J.-J.S.); (J.-L.L.); (J.-H.L.)
| | | | | | | |
Collapse
|
5
|
Li Z, Li M, Fang X, Yu D, Hu X. Dietary Lactobacillus johnsonii-derived extracellular vesicles ameliorate acute colitis by regulating gut microbiota and maintaining intestinal barrier homeostasis. Food Funct 2024; 15:11757-11779. [PMID: 39545264 DOI: 10.1039/d4fo04194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. Lactobacillus johnsonii (L. johnsonii) is a potential anti-inflammatory bacterium, and compared to other probiotic Lactobacillus species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary L. johnsonii exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of L. johnsonii in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.
Collapse
Affiliation(s)
- Zhiguo Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China.
| | - Mengyu Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China.
| |
Collapse
|
6
|
Dentice Maidana S, Argañaraz Aybar JN, Albarracin L, Imamura Y, Arellano-Arriagada L, Namai F, Suda Y, Nishiyama K, Villena J, Kitazawa H. Modulation of the Gut-Lung Axis by Water Kefir and Kefiran and Their Impact on Toll-like Receptor 3-Mediated Respiratory Immunity. Biomolecules 2024; 14:1457. [PMID: 39595633 PMCID: PMC11591811 DOI: 10.3390/biom14111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The beneficial effect of milk kefir on respiratory heath has been previously demonstrated; however, water kefir and kefiran in the context of respiratory viral infections have not been investigated. Water kefir and kefiran could be alternatives to milk kefir for their application in persons with lactose intolerance or milk allergy and could be incorporated into vegan diets. Using mice models, this work demonstrated that the oral administration of water kefir or kefiran can modulate the respiratory Toll-like receptor (TLR3)-mediated innate antiviral immunity and improve the resistance to respiratory syncytial virus (RSV) infection. The treatment of mice with water kefir or kefiran for 6 days improved the production of interferons (IFN-β and IFN-γ) and antiviral factors (Mx2, OAS1, RNAseL, and IFITM3) in the respiratory tract after the activation of the TLR3 signaling pathway, differentially modulated the balance of pro- and anti-inflammatory cytokines, reduced RSV replication, and diminished lung tissue damage. Maintaining a proper balance between anti-inflammatory and pro-inflammatory mediators is vital for ensuring an effective and safe antiviral immune response, and the results of this work show that water kefir and kefiran would help to maintain that balance promoting a controlled inflammatory response that defends against infection while minimizing tissue damage.
Collapse
Affiliation(s)
- Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (S.D.M.); (L.A.)
| | - Julio Nicolás Argañaraz Aybar
- Cátedra de Inmunología, Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán 4000, Argentina;
| | - Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (S.D.M.); (L.A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Luciano Arellano-Arriagada
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (S.D.M.); (L.A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.I.); (L.A.-A.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
7
|
Zhu R, Zhang Y, Wang X, Liu BD, Chowdhury D, Li Z, Pan M, Peng T, Chen J, Huang W, Zhan L, Fan GC. Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway. Mol Med 2024; 30:216. [PMID: 39543493 PMCID: PMC11566284 DOI: 10.1186/s10020-024-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored. METHODS BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis. RESULTS LGG-derived EVs (BEVLGG) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEVLGG collected from pH8 culture condition (BEVpH8) exhibited the strongest capacity of phagocytosis, compared with BEVpH5 and BEVpH6.5. Treatment of septic mice with BEVpH8 significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEVpH8-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEVpH8-mediated phagocytosis, compared to controls. CONCLUSIONS This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.
Collapse
Affiliation(s)
- Ruiyao Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Benjamin D Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, USA
| | - Debabrata Chowdhury
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Zhixin Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mingliang Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Tianqing Peng
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wei Huang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| |
Collapse
|
8
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
9
|
Rivero-Pino F, Marquez-Paradas E, Montserrat-de la Paz S. Food-derived vesicles as immunomodulatory drivers: Current knowledge, gaps, and perspectives. Food Chem 2024; 457:140168. [PMID: 38908244 DOI: 10.1016/j.foodchem.2024.140168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extracellular vesicles (EVs) are lipid-bound membrane vesicles released from cells, containing active compounds, which can be found in different foods. In this review, the role of food-derived vesicles (FDVs) as immunomodulatory drivers is summarized, with a focus on sources, isolation techniques and yields, as well as bioavailability and potential health implications. In addition, gaps and perspectives detected in this research field have been highlighted. FDVs have been efficiently extracted from different sources, and differential ultracentrifugation seems to be the most adequate isolation technique, with yields ranging from 108 to 1014 EV particles/mL. Animal studies show promising results in how these FDVs might regulate different pathways related to inflammation. Further investigation on the production of stable components in a cost-effective way, as well as human studies demonstrating safety and health-promoting properties, since scarce information has been reported until now, in the context of modulating the immune system are needed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocio/CSIC/University of Seville, 41013 Seville, Spain.
| |
Collapse
|
10
|
Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:509-526. [PMID: 39697628 PMCID: PMC11648425 DOI: 10.20517/evcna.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 12/20/2024]
Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
Collapse
Affiliation(s)
| | | | - Suresh Mathivanan
- Correspondence to: Prof. Suresh Mathivanan, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Science Drive, Melbourne 3086, Victoria, Australia. E-mail:
| |
Collapse
|
11
|
Lee S, Jung SY, Yoo D, Go D, Park JY, Lee JM, Um W. Alternatives of mesenchymal stem cell-derived exosomes as potential therapeutic platforms. Front Bioeng Biotechnol 2024; 12:1478517. [PMID: 39315312 PMCID: PMC11417005 DOI: 10.3389/fbioe.2024.1478517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With outstanding therapeutic potential in the tissue regeneration and anti-inflammation, mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a prominent therapeutic in recent. However, poor production yield and reproducibility have remained as significant challenges of their practical applications. To surmount these challenges, various alternative materials with stem cell-like functions, have been recently investigated, however, there has been no comprehensive analysis in these alternatives so far. Here, we discuss the recent progress of alternatives of MSC-EXOs, including exosomes and exosome-like nanovesicles from various biological sources such as plants, milk, microbes, and body fluids. Moreover, we extensively compare each alternative by summarizing their unique functions and mode of actions to suggest the expected therapeutic target and future directions for developing alternatives for MSC-EXOs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Min Lee
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Chen X, Li Q, Xie J, Nie S. Immunomodulatory Effects of Probiotic-Derived Extracellular Vesicles: Opportunities and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19259-19273. [PMID: 39177683 DOI: 10.1021/acs.jafc.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Probiotics are known to modulate host immune responses in the course of many diseases. Recently, bacterial extracellular vesicles (EVs), which contain bioactive proteins, lipids, nucleic acids, and metabolites released by bacteria, have been identified as potentially important mediators of bacteria-bacterium and bacteria-host interactions. With the deepening of research, it has been found that probiotic-derived EVs play a significant role in regulating host immune function and, thus, exerting health-promoting effects. Nevertheless, current research is in its early stages, and there remains a long way to go to bridge the gap between basic research and clinical practice. In this review, we describe the fundamental aspects of probiotic-derived EVs, including their biogenesis, cargo sorting mechanism, and transport capabilities. We further discussed the potential mechanisms of probiotic-derived EVs in regulating the host's gut microbiota and immune responses. Finally, we speculate about the potential of probiotic-derived EVs as new postbiotics for applications in functional food, disease treatment substitutes, and immune regulatory adjuvants.
Collapse
Affiliation(s)
- Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
13
|
Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiol (Praha) 2024; 69:927-939. [PMID: 38308067 DOI: 10.1007/s12223-024-01138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Helicobacter pylori infection is the major risk factor associated with the development of gastric cancer. Currently, administration of standard antibiotic therapy combined with probiotics and postbiotics has gained significant attention in the management of H. pylori infection. In this work, the immunomodulatory effects of Lactobacillus crispatus-derived extracellular vesicles (EVs) and cell-free supernatant (CFS) were investigated on H. pylori-induced inflammatory response in human gastric adenocarcinoma (AGS) cells. L. crispatus-derived EVs were isolated by ultracentrifugation and physically characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the protein content of L. crispatus-derived EVs was also evaluated by SDS-PAGE. Cell viability of AGS cells exposed to varying concentrations of EVs and CFS was assessed by MTT assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR. ELISA was used for the measurement of IL-8 production in AGS cells. In addition, EVs (50 μg/mL) and CFS modulated the H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α, and upregulating the expression of IL-10, and TGF-ß genes in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with L. crispatus-derived EVs and CFS. In conclusion, our observation suggests for the first time that EVs released by L. crispatus strain RIGLD-1 and its CFS could be recommended as potential therapeutic agents against H. pylori-triggered inflammation.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Li Y, Li J, Li S, Zhou S, Yang J, Xu K, Chen Y. Exploring the gut microbiota's crucial role in acute pancreatitis and the novel therapeutic potential of derived extracellular vesicles. Front Pharmacol 2024; 15:1437894. [PMID: 39130638 PMCID: PMC11310017 DOI: 10.3389/fphar.2024.1437894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
During acute pancreatitis, intestinal permeability increases due to intestinal motility dysfunction, microcirculatory disorders, and ischemia-reperfusion injury, and disturbances in the intestinal flora make bacterial translocation easier, which consequently leads to local or systemic complications such as pancreatic and peripancreatic necrotic infections, acute lung injury, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Therefore, adjusting intestinal ecosystem balance may be a promising approach to control local and systemic complications of acute pancreatitis. In this paper, we reviewed the causes and manifestations of intestinal flora disorders during acute pancreatitis and their complications, focused on the reduction of acute pancreatitis and its complications by adjusting the intestinal microbial balance, and innovatively proposed the treatment of acute pancreatitis and its complications by gut microbiota-derived extracellular vesicles.
Collapse
Affiliation(s)
- Yijie Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shumin Zhou
- Wenzhou Institute of Shanghai University, Wenzhou, China
| | - Jiahua Yang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Wenzhou Institute of Shanghai University, Wenzhou, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yafeng Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
Mao N, Yu Y, He J, Yang Y, Liu Z, Lu Y, Wang D. Matrine Ameliorates DSS-Induced Colitis by Suppressing Inflammation, Modulating Oxidative Stress and Remodeling the Gut Microbiota. Int J Mol Sci 2024; 25:6613. [PMID: 38928319 PMCID: PMC11204106 DOI: 10.3390/ijms25126613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.
Collapse
MESH Headings
- Animals
- Alkaloids/pharmacology
- Gastrointestinal Microbiome/drug effects
- Oxidative Stress/drug effects
- Quinolizines/pharmacology
- Quinolizines/therapeutic use
- Dextran Sulfate
- Matrines
- Mice
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Male
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/metabolism
- Colitis/microbiology
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Zonula Occludens-1 Protein/metabolism
- Colon/pathology
- Colon/metabolism
- Colon/drug effects
- Colon/microbiology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Inbred C57BL
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Occludin/metabolism
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Watanabe M, Nakai H, Ohara T, Kawasaki K, Murosaki S, Hirose Y. Beneficial effect of heat-killed Lactiplantibacillus plantarum L-137 on intestinal barrier function of rat small intestinal epithelial cells. Sci Rep 2024; 14:12319. [PMID: 38811623 PMCID: PMC11136994 DOI: 10.1038/s41598-024-62657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Heat-killed Lactiplantibacillus plantarum L-137 (HK L-137) has been suggested to enhance the intestinal barrier in obese mice, leading to improvement of metabolic abnormalities and adipose tissue inflammation, and in healthy humans with overweight, leading to improvement of systemic inflammation. However, its detailed mechanism of action has not been clarified. Therefore, this study investigated the effects of HK L-137 on the permeability of rat small intestinal epithelial IEC-6 cells, tight junction-related gene and protein expression and localization, and intracellular signaling pathways involved in barrier function. Treatment of IEC-6 cells with HK L-137 for 26 h significantly reduced the permeability to fluorescein isothiocyanate-dextran (FD-4). HK L-137 also increased gene and protein expression of zonula occludens-1 (ZO-1), an important tight junction protein, without affecting the localization. Furthermore, inhibition of the extracellular signal-regulated kinase (ERK)1/2 pathway in IEC-6 cells canceled the HK L-137-related reduction in permeability to FD-4. Phosphorylation of ERK in IEC-6 cells was induced 15 min after the addition of HK L-137. These results suggest that HK L-137 reduces intestinal permeability partly through activating the ERK pathway and increasing expression of the ZO-1 gene and protein. Enhancement of intestinal barrier function with HK L-137 might be effective in preventing and treating leaky gut, for which no specific therapeutic tool has been established.
Collapse
Affiliation(s)
- Mototsugu Watanabe
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo, 664-0011, Japan.
| | - Hiroko Nakai
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Tatsuya Ohara
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Kengo Kawasaki
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Shinji Murosaki
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| | - Yoshitaka Hirose
- Research & Development Institute, House Wellness Foods Corporation, 3-20 Imoji, Itami, Hyogo, 664-0011, Japan
| |
Collapse
|
18
|
Liu R. A promising area of research in medicine: recent advances in properties and applications of Lactobacillus-derived exosomes. Front Microbiol 2024; 15:1266510. [PMID: 38686107 PMCID: PMC11056577 DOI: 10.3389/fmicb.2024.1266510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Lactobacillus-derived exosomes, small extracellular vesicles released by bacteria, have emerged as a promising area of research in recent years. These exosomes possess a unique structural and functional diversity that allows them to regulate the immune response and promote gut health. The isolation and purification of these exosomes are crucial for their effective use as a therapeutic agent. Several isolation and purification methods have been developed, including differential ultracentrifugation, density gradient centrifugation, and size-exclusion chromatography. Lactobacillus-derived exosomes have been demonstrated to have therapeutic potential in various diseases, such as inflammatory bowel disease, liver disease, and neurological disorders. Moreover, they have been shown to serve as effective carriers for drug delivery. Genetic engineering of these exosomes has also shown promise in enhancing their therapeutic potential. Overall, Lactobacillus-derived exosomes represent a promising area of research for the development of novel therapeutics for immunomodulation, gut health, and drug delivery.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
19
|
Tao Z, Li X, Yu H, Wu J, Wen Y, Liu T. Photodynamic Therapy of LD4-Photosensitizer Attenuates the Acute Pneumonia Induced by Klebsiella pneumoniae. ACS Pharmacol Transl Sci 2024; 7:1101-1113. [PMID: 38633581 PMCID: PMC11020065 DOI: 10.1021/acsptsci.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that induces acute lung injury (ALI) and inflammation in humans, necessitating immediate hospitalization and treatment. At present, the clinical treatment is largely dependent on hormones or antibiotics but is associated with drawbacks posed by the lack of eradication of the bacterium upon treatment and drug resistance. Therefore, there is an urgent need for novel and effective treatments. The current study investigated the treatment of K. pneumonia-induced ALI using a photosensitizer LD4 in conjunction with photodynamic therapy (PDT). The water content in the lungs (corresponding to edema) of a rat model of pneumonia induced by K. pneumoniae was reduced upon treatment with LD4-PDT. The counts of leukocyte, lymphocyte, and polymorphonuclear leukocyte in the blood were determined in the rat model of pneumonia, as were the concentrations of inflammatory cytokines (estimated using an enzyme-linked immunosorbent assay). The LD4-PDT treatment prominently reduced the levels of interleukin (IL)-6, IL-10, tumor necrosis factor-α, superoxide dismutase, and immune cells. Results suggest that LD4-PDT considerably alleviates the inflammation and oxidative stress caused by K. pneumoniae in the rat model of pneumonia. Furthermore, it could effectively improve the survival rate in the rat model of K. pneumonia-induced pneumonia and ameliorate histological changes while protecting the integrity of the pulmonary epithelial cells. These results highlight the potential application of LD4 as a photosensitizer for treating acute pneumonia induced by K. pneumoniae.
Collapse
Affiliation(s)
- Zhuo Tao
- Tianjin
Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science
and Peking Union Medical College, Tianjin 300192, China
| | - Xin Li
- Department
of Pathology, Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin 300350, China
| | - Hongzhi Yu
- Department
of Respiratory Medicine, Haihe Hospital, Tianjin 300350, China
| | - Junping Wu
- Department
of Infection, Haihe Hospital, Tianjin 300350, China
| | - Ying Wen
- Tianjin
Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science
and Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Tianjin
Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science
and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
20
|
Di Y, Song Y, Xu K, Wang Q, Zhang L, Liu Q, Zhang M, Liu X, Wang Y. Chicoric Acid Alleviates Colitis via Targeting the Gut Microbiota Accompanied by Maintaining Intestinal Barrier Integrity and Inhibiting Inflammatory Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6276-6288. [PMID: 38485738 DOI: 10.1021/acs.jafc.3c08363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1β, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Kejia Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qianxu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Min Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
21
|
Shi Y, Zhang C, Cao W, Li L, Liu K, Zhu H, Balcha F, Fang Y. Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future Microbiol 2024; 19:227-239. [PMID: 38270125 DOI: 10.2217/fmb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 01/26/2024] Open
Abstract
Aims: Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 have antiproliferative activity of colon cells, but the effect on glycolytic metabolism of cancer cell remains enigmatic. The authors investigated how Lacticaseibacillus paracasei extracellular vesicles (LpEVs) inhibit the growth of colon cancer cells by affecting tumor metabolism. Materials & methods: HCT116 cells were treated with LpEVs and then differentially expressed genes were analyzed by transcriptome sequencing, the sequencing results were confirmed in vivo and in vitro. Results: LpEVs entered colon cancer cells and inhibited their growth. Transcriptome sequencing revealed differentially expressed genes were related to glycolysis. Lactate production, glucose uptake and lactate dehydrogenase activity were significantly reduced after treatment. LpEVs also reduced HIF-1α, GLUT1 and LDHA expression. Conclusion: LpEVs exert their antiproliferative activity of colon cancer cells by decreasing HIF-1α-mediated glycolysis.
Collapse
Affiliation(s)
- Yangqian Shi
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Microbiology, Beihua University, 132013 Jilin, China
| | - Chunliang Zhang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Blood Centre,150056 Harbin, China
| | - Wanyu Cao
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Luyi Li
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Kaili Liu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Hanyue Zhu
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
| | - Fikadu Balcha
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Department of Medical Laboratory Science, College of Health Science, Arsi University, POBX 193 Asella, Ethiopia
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, 150081 Harbin, China
- Heilongjiang Province Key Laboratory of Immunity & Infection, Pathogenic Biology, 150081 Harbin, China
| |
Collapse
|
22
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
23
|
Li M, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Lactic acid bacteria derived extracellular vesicles: emerging bioactive nanoparticles in modulating host health. Gut Microbes 2024; 16:2427311. [PMID: 39538968 PMCID: PMC11572086 DOI: 10.1080/19490976.2024.2427311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lactic acid bacteria derived extracellular vesicles (LAB-EVs) are nano-sized and carry a variety of biological cargoes. LAB-EVs have proven to be potential mediators of intercellular communication, serving not only the parental bacteria but also the host cell in both physiology and pathology. LAB-EVs are therapeutically beneficial in various diseases through a cell-free strategy. Particularly, EVs secreted from probiotics can exert health-promoting effects on humans. Additionally, the excitement around LAB-EVs has extended to their use as nano-sized drug carriers, since they can traverse biological barriers. Nevertheless, significant challenges in terms of isolation, characterization, and safety must be addressed to ensure the clinical application of LAB-EVs. Therefore, this review emphasizes the isolation and purification methods of LAB-EVs. We also introduce the biogenesis, cargo sorting, and functions of LAB-EVs. The biological regulatory factors of LAB-EVs are summarized and discussed. Special attention is given to the interaction between LAB-EVs and the host, their ability to maintain intestinal homeostasis, and the immunity and inflammation they induce in diverse diseases. Furthermore, we summarize the characterization of LAB-EV cargoes by advanced analytical methods such as proteomics. Finally, we discuss the challenges and opportunities of LAB-EVs as a means of diagnosis and treatment in clinical translation. In conclusion, this review scrutinizes current knowledge and provides guidelines for proposing new perspectives for future research in the field of LAB-EVs.
Collapse
Affiliation(s)
- Mohan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
Mignini I, Piccirilli G, Termite F, Paratore M, Esposto G, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Extracellular Vesicles: Novel Potential Therapeutic Agents in Inflammatory Bowel Diseases. Cells 2023; 13:90. [PMID: 38201294 PMCID: PMC10778449 DOI: 10.3390/cells13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Patients affected by inflammatory bowel diseases (IBD) can nowadays benefit from a growing number of pharmacological options. However, in moderate-to-severe cases, the therapeutic response is still far from optimal, and treatment changes and optimizations are often required. Thus, researchers in this field are strongly engaged in studies aiming to identify new potential therapeutic targets. Extracellular vesicles (EVs) are tiny subcellular bodies with a phospholipid bilayer envelope containing bioactive molecules, which are released from different cells and are involved in intercellular communication. Recent pre-clinical data show their emerging role in the pathogenesis and treatment of IBD. In our review, we summarize current evidence about the function of EVs as active therapeutic agents in ulcerative colitis and Crohn's disease, analyzing the properties of EVs derived from different cellular sources and the mechanisms through which they may improve intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (G.P.); (F.T.); (M.P.); (G.E.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
25
|
Lee BH, Chen YZ, Shen TL, Pan TM, Hsu WH. Proteomic characterization of extracellular vesicles derived from lactic acid bacteria. Food Chem 2023; 427:136685. [PMID: 37356267 DOI: 10.1016/j.foodchem.2023.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Lactobacillus species confer health benefits by their metabolites, secreted molecules, and population numbers. Extracellular vesicles (EVs) are nano-sized particles released from cells and mediate intercellular communications. EVs-encapsulated cargos are a crucial key to decide involved biological function. However, little is known about the composition of EVs, leaving mechanisms by which Lactobacillus-derived EVs affect recipient cells remaining unresolved. This study examined the composition of EV proteins from Lactobacillus species by using liquid chromatography coupled with tandem mass spectrometry, including L. plantarum, L. fermentum, and L. gasseri. The major proteins of EVs are associated with biological processes such as catalytic activity, gluco-neogenesis, cell wall organization, and glycolytic processes. Motif enrichment analysis revealed that EVs from L. plantarum and L. fermentum contained proteins with serine-rich motif. This is the first study to report the composition and comparison of EV proteins from Lactobacillus species, providing important information of EVs in functional food products development.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan
| | - You-Zuo Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 106319, Taiwan
| | - Tzu-Ming Pan
- Department of Research and Development Division, SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| |
Collapse
|
26
|
Zheng C, Zhong Y, Xie J, Wang Z, Zhang W, Pi Y, Zhang W, Liu L, Luo J, Xu W. Bacteroides acidifaciens and its derived extracellular vesicles improve DSS-induced colitis. Front Microbiol 2023; 14:1304232. [PMID: 38098663 PMCID: PMC10720640 DOI: 10.3389/fmicb.2023.1304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction "Probiotic therapy" to regulate gut microbiota and intervene in intestinal diseases such as inflammatory bowel disease (IBD) has become a research hotspot. Bacteroides acidifaciens, as a new generation of probiotics, has shown beneficial effects on various diseases. Methods In this study, we utilized a mouse colitis model induced by dextran sodium sulfate (DSS) to investigate how B. acidifaciens positively affects IBD. We evaluated the effects ofB. acidifaciens, fecal microbiota transplantation, and bacterial extracellular vesicles (EVs) on DSS-induced colitis in mice. We monitored the phenotype of mouse colitis, detected serum inflammatory factors using ELISA, evaluated intestinal mucosal barrier function using Western blotting and tissue staining, evaluated gut microbiota using 16S rRNA sequencing, and analyzed differences in EVs protein composition derived from B. acidifaciens using proteomics to explore how B. acidifaciens has a positive impact on mouse colitis. Results We confirmed that B. acidifaciens has a protective effect on colitis, including alleviating the colitis phenotype, reducing inflammatory response, and improving intestinal barrier function, accompanied by an increase in the relative abundance of B. acidifaciens and Ruminococcus callidus but a decrease in the relative abundance of B. fragilis. Further fecal bacterial transplantation or fecal filtrate transplantation confirmed the protective effect of eosinophil-regulated gut microbiota and metabolites on DSS-induced colitis. Finally, we validated that EVs derived from B. acidifaciens contain rich functional proteins that can contribute to the relief of colitis. Conclusion Therefore, B. acidifaciens and its derived EVs can alleviate DSS-induced colitis by reducing mucosal damage to colon tissue, reducing inflammatory response, promoting mucosal barrier repair, restoring gut microbiota diversity, and restoring gut microbiota balance in mice. The results of this study provide a theoretical basis for the preclinical application of the new generation of probiotics.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiming Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Bai Y, Miyanaga K, Yamamoto N. Enhanced tight junction in Caco-2 cells by the pretreatment with Lactobacillus johnsonii strain MG. Biosci Biotechnol Biochem 2023; 87:1532-1536. [PMID: 37704400 DOI: 10.1093/bbb/zbad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
We investigated roles of Lactobacillus johnsonii MG (MG) isolated from mice with interaction with tight junction on gut barrier function with Caco-2 cell model. Pretreatment with MG enhanced barrier function and showed protective effect against Enterococcus faecium provided damage. MG treatment increased the gene expressions of transcriptional regulator NFKB and major tight junction protein, ZO-1.
Collapse
Affiliation(s)
- Yuying Bai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
28
|
Pallio G. Editorial: Novel Therapeutic Approaches in Inflammatory Bowel Diseases. Biomedicines 2023; 11:2466. [PMID: 37760907 PMCID: PMC10526183 DOI: 10.3390/biomedicines11092466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) encompass ulcerative colitis (UC) and Crohn's disease (CD), both of which are inflammatory ailments affecting the gastrointestinal tract [...].
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
29
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
30
|
Niu G, Jian T, Gai Y, Chen J. Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Adv Drug Deliv Rev 2023; 196:114774. [PMID: 36906231 DOI: 10.1016/j.addr.2023.114774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
The gut is a fundamental organ in controlling human health. Recently, researches showed that substances in the intestine can alter the course of many diseases through the intestinal epithelium, especially intestinal flora and exogenously ingested plant vesicles that can be transported over long distances to various organs. This article reviews the current knowledge on extracellular vesicles in modulating gut homeostasis, inflammatory response and numerous metabolic disease that share obesity as a co-morbidity. These complex systemic diseases that are difficult to cure, but can be managed by some bacterial and plant vesicles. Vesicles, due to their digestive stability and modifiable properties, have emerged as novel and targeted drug delivery vehicles for effective treatment of metabolic diseases.
Collapse
Affiliation(s)
- Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
31
|
Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023; 15:522. [PMID: 36839844 PMCID: PMC9967243 DOI: 10.3390/pharmaceutics15020522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
For many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles. Although the importance of extracellular vesicles in the virulence of many live-threatening pathogens is widely described in the literature, much less is known with respect to the health-promoting effect of extracellular vesicles secreted by non-pathogenic microorganisms, including probiotics. Based on this, in the current review article, we decided to collect the latest literature data on the health-inducing properties of extracellular vesicles secreted by probiotics. The characteristics of probiotics' extracellular vesicles will be extended by the description of their physicochemical properties and the proteome in connection with the biological activities exhibited by these structures.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “Gabriele d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Irene Vitale
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
32
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
33
|
Novel Horizons in Postbiotics: Lactobacillaceae Extracellular Vesicles and Their Applications in Health and Disease. Nutrients 2022; 14:nu14245296. [PMID: 36558455 PMCID: PMC9782203 DOI: 10.3390/nu14245296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus probiotics contained in dietary supplements or functional foods are well-known for their beneficial properties exerted on host health and diverse pathological situations. Their capacity to improve inflammatory bowel disease (IBD) and regulate the immune system is especially remarkable. Although bacteria-host interactions have been thought to occur directly, the key role that extracellular vesicles (EVs) derived from probiotics play on this point is being unveiled. EVs are lipid bilayer-enclosed particles that carry a wide range of cargo compounds and act in different signalling pathways. Notably, these EVs have been recently proposed as a safe alternative to the utilisation of live bacteria since they can avoid the possible risks that probiotics may entail in vulnerable cases such as immunocompromised patients. Therefore, this review aims to give an updated overview of the existing knowledge about EVs from different Lactobacillus strains, their mechanisms and effects in host health and different pathological conditions. All of the information collected suggests that EVs could be considered as potential tools for the development of future novel therapeutic approaches.
Collapse
|
34
|
Xu D, Zhuang L, Gao S, Ma H, Cheng J, Liu J, Liu D, Fu S, Hu G. Orally Administered Ginkgolide C Attenuates DSS-Induced Colitis by Maintaining Gut Barrier Integrity, Inhibiting Inflammatory Responses, and Regulating Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14718-14731. [PMID: 36375817 DOI: 10.1021/acs.jafc.2c06177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC), one of the foremost common forms of inflammatory bowel disease, poses a serious threat to human health. Currently, safe and effective treatments are not available. This study investigated the protective effect of ginkgolide C (GC), a terpene lactone extracted from Ginkgo biloba leaves, on UC and its underlying mechanism. The results showed that GC remarkably mitigated the severity of DSS-induced colitis in mice, as demonstrated by decreased body weight loss, reduced disease activity index, mitigated tissue damage, and increased colon length. Furthermore, GC inhibited DSS-induced hyperactivation of inflammation-related signaling pathways (NF-κB and MAPK) to reduce the production of inflammatory mediators, thereby mitigating the inflammatory response in mice. GC administration also restored gut barrier function by elevating the number of goblet cells and boosting the levels of tight junction-related proteins (claudin-3, occludin, and ZO-1). In addition, GC rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora, elevating the abundance of beneficial bacteria, such as Lactobacillus and Allobaculum, and decreasing the abundance of harmful bacteria, such as Bacteroides, Oscillospira, Ruminococcus, and Turicibacter. Taken together, these results suggest that GC administration effectively alleviates DSS-induced colitis by inhibiting the inflammatory response, maintaining mucosal barrier integrity, and regulating intestinal flora. This study may provide a scientific basis for the rational use of GC in preventing colitis and other related diseases.
Collapse
Affiliation(s)
- Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Lu Zhuang
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing 100853, China
- Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing 100000, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing 100700, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, China
| | - Shan Gao
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| |
Collapse
|
35
|
Muhammad W, Zhu J, Zhai Z, Xie J, Zhou J, Feng X, Feng B, Pan Q, Li S, Venkatesan R, Li P, Cao H, Gao C. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater 2022; 148:258-270. [PMID: 35724918 PMCID: PMC9212862 DOI: 10.1016/j.actbio.2022.06.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients as currently seen in coronavirus disease 2019 (COVID-19). There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to lung to reduce the burden of high doses of medications and attenuate inflammatory cells and pathways. Herein, we prepared dexamethasone-loaded ROS-responsive polymer nanoparticles (PFTU@DEX NPs) by a modified emulsion approach, which achieved high loading content of DEX (11.61 %). DEX was released faster from the PFTU@DEX NPs in a ROS environment, which could scavenge excessive ROS efficiently both in vitro and in vivo. The PFTU NPs and PFTU@DEX NPs showed no hemolysis and cytotoxicity. Free DEX, PFTU NPs and PFTU@DEX NPs shifted M1 macrophages to M2 macrophages in RAW264.7 cells, and showed anti-inflammatory modulation to A549 cells in vitro. The PFTU@DEX NPs treatment significantly reduced the increased total protein concentration in BALF of ALI mice. The delivery of PFTU@DEX NPs decreased the proportion of neutrophils significantly, mitigated the cell apoptosis remarkably compared to the other groups, reduced M1 macrophages and increased M2 macrophages in vivo. Moreover, the PFTU@DEX NPs had the strongest ability to suppress the expression of NLRP3, Caspase1, and IL-1β. Therefore, the PFTU@DEX NPs could efficiently suppress inflammatory cells, ROS signaling pathways, and cell apoptosis to ameliorate LPS-induced ALI. STATEMENT OF SIGNIFICANCE: The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients. There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to modulate the inflammatory disorder and suppress the expression of ROS and inflammatory cytokines. The inhaled PFTU@DEX NPs prepared through a modified nanoemulsification method suppressed the activation of NLRP3, induced the polarization of macrophage phenotype from M1 to M2, and thereby reduced the neutrophil infiltration, inhibited the release of proteins and inflammatory mediators, and thus decreased the acute lung injury in vivo.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rajiu Venkatesan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
36
|
An J, Ha EM. Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells. J Microbiol 2022; 60:735-745. [DOI: 10.1007/s12275-022-2201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
|
37
|
Comparison of Selenium-Enriched Lactobacillusparacasei, Selenium-Enriched Yeast, and Selenite for the Alleviation of DSS-Induced Colitis in Mice. Nutrients 2022; 14:nu14122433. [PMID: 35745163 PMCID: PMC9231187 DOI: 10.3390/nu14122433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) have been found to have decreased immune function. Selenium (Se) is an essential trace element that is beneficial for human health, which has a significant stimulating effect on immune function. We compared the effects of different Se forms on the alleviation of colitis in DSS-induced mice. Moreover, we also aimed to determine whether Se-enriched Lactobacillus paracasei CCFM 1089 could be used as a new organic Se supplement. Different Se supplements (Se-enriched L. paracasei CCFM 1089, Se-enriched yeast and sodium selenite) were given to Se-deficient mice suffering from colitis. Se-enriched L. paracasei CCFM 1089, which is based on selenocysteine (SeCys), had similar effects in terms of reducing oxidative stress and inhibiting pro-inflammatory factors to Se-enriched yeast; however, selenase activity in the Se-enriched L. paracasei CCFM 1089-treated mice was higher than that in other treatment groups. In addition, Se-enriched L. paracasei CCFM 1089 could better protect the intestinal mucosa, which increased the expression of tight junction proteins (ZO-1 and occludin) in mice. Thus Se-enriched L. paracasei CCFM 1089 was shown to alleviate IBD, suggesting that it has potential as a good organic Se supplement.
Collapse
|
38
|
Roselli M, Maruszak A, Grimaldi R, Harthoorn L, Finamore A. Galactooligosaccharide Treatment Alleviates DSS-Induced Colonic Inflammation in Caco-2 Cell Model. Front Nutr 2022; 9:862974. [PMID: 35495925 PMCID: PMC9047546 DOI: 10.3389/fnut.2022.862974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
The biological activities of dietary bioactive polysaccharides have been largely explored. Studies on the immunomodulating effects of oligosaccharides and polysaccharides have shown that they are able to modulate innate immunity. Prebiotics are a class of poorly digested carbohydrates that are mainly produced from dietary fibers, which are carbohydrate polymers with ten or more monomeric units as defined by the Codex Alimentarius Commission in 2009. Considering the capacity of prebiotics in reducing gut inflammation, the aim of this study was to investigate the anti-inflammatory activity of galactooligosaccharide (Bimuno® GOS) in an in vitro model of ulcerative colitis (UC)-like inflamed intestinal cells. Differentiated Caco-2 cells were exposed to 2 % dextran-sulfate-sodium salt (DSS) to induce inflammation, and then with different concentrations of Bimuno GOS (1-1,000 μg/ml). Cell monolayer permeability, tight- and adherent junction protein distribution, pro-inflammatory cytokine secretion, and NF-kB cascade were assessed. Bimuno GOS at different concentrations, while not affecting cell monolayer permeability, was shown to counteract UC-like intestinal inflammatory responses and damages induced by DSS. Indeed, Bimuno GOS was able to counteract the detrimental effects of DSS on cell permeability, determined by transepithelial electrical resistance, phenol red apparent permeability, and tight- and adherent junction protein distribution. Furthermore, Bimuno GOS inhibited the DSS-induced NF-kB nuclear translocation and pro-inflammatory cytokine secretion. Further analyses showed that Bimuno GOS was able to revert the expression levels of most of the proteins involved in the NF-kB cascade to control levels. Thus, the prebiotic Bimuno GOS can be a safe and effective way to modulate the gut inflammatory state through NF-kB pathway modulation, and could possibly further improve efficacy in inducing remission of UC.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Rome, Italy
| | | | | | | | - Alberto Finamore
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Rome, Italy
| |
Collapse
|
39
|
González-Orozco BD, García-Cano I, Jiménez-Flores R, Alvárez VB. Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. J Dairy Sci 2022; 105:3703-3715. [DOI: 10.3168/jds.2021-21382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|
40
|
Shi Y, Meng L, Zhang C, Zhang F, Fang Y. Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway. Microbiol Res 2021; 255:126921. [PMID: 34839170 DOI: 10.1016/j.micres.2021.126921] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world. Previous research has shown that Lacticaseibacillus paracasei strains and its cultures have anti-colon cancer effects, but the study of L. paracasei-derived extracellular vesicles (LpEVs) as intercellular communication molecule against colon cancer has not been previously reported. Our research showed LpEVs were taken in by colorectal cancer cells. Subsequently, LpEVs inhibited the proliferation, migration, invasion and promote apoptosis of colorectal cancer cells. LpEVs inhibited the growth of CRC xenograft in nude mice and promoted tumor apoptosis in vivo. Transcriptome sequencing analysis revealed that differentially expressed genes were involved in the regulation of apoptosis. LpEVs significantly inhibited the phosphorylation level of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT in colorectal cancer cells and reduced the expression of Bcl-2 protein. In conclusion, extracellular vesicles of Lacticaseibacillus paracasei PC-H1 can inhibit the growth of colorectal cancer cells in vivo and vitro and induce apoptosis through PDK1/AKT/Bcl-2 signaling pathway. This research not only provides a new mechanism for the anti-tumor effects of probiotics, but also opens up new opportunity for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yangqian Shi
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lingyu Meng
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chunliang Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin, China.
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China; Heilongjiang Province Key Laboratory of Immunity and Infection, Pathogenic Biology, Harbin, China.
| |
Collapse
|
41
|
Vieira CP, Rosario AILS, Lelis CA, Rekowsky BSS, Carvalho APA, Rosário DKA, Elias TA, Costa MP, Foguel D, Conte-Junior CA. Bioactive Compounds from Kefir and Their Potential Benefits on Health: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9081738. [PMID: 34745425 PMCID: PMC8566050 DOI: 10.1155/2021/9081738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
Despite evidence of health benefits from kefir administration, a systematic review with meta-analysis on bioactive compounds associated with these benefits is still absent in the literature. Kefir is fermented milk resulting from the metabolism of a complex microbiota in symbiosis. Recent researches have investigated the bioactive compounds responsible for the preventive and therapeutic effects attributed to kefir. However, differences in functional potential between industrial and artisanal kefir are still controversial. Firstly, we identified differences in the microbial composition among both types of kefir. Available evidence concerning the action of different bioactive compounds from kefir on health, both from in vitro and in vivo studies, was subsequently summarized to draw a primary conclusion of the dose and the intervention time for effect, the producer microorganisms, the precursor in the milk, and the action mechanism. Meta-analysis was performed to investigate the statistically significant differences (P < 0.05) between intervention and control and between both types of kefir for each health effect studied. In summary, the bioactive compounds more commonly reported were exopolysaccharides, including kefiran, bioactive peptides, and organic acids, especially lactic acid. Kefir bioactive compounds presented antimicrobial, anticancer, and immune-modulatory activities corroborated by the meta-analysis. However, clinical evidence is urgently needed to strengthen the practical applicability of these bioactive compounds. The mechanisms of their action were diverse, indicating that they can act by different signaling pathways. Still, industrial and artisanal kefir may differ regarding functional potential-OR of 8.56 (95% CI: 2.27-32.21, P ≤ .001)-according to the observed health effect, which can be associated with differences in the microbial composition between both types of kefir.
Collapse
Affiliation(s)
- Carla P. Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Anisio Iuri L. S. Rosario
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, 40170-110 Bahia, Brazil
| | - Carini A. Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Bruna Samara S. Rekowsky
- Laboratory of Inspection and Technology of Milk and Derivatives, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, 40170-110 Bahia, Brazil
| | - Anna Paula A. Carvalho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Denes Kaic A. Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Thaísa A. Elias
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Marion P. Costa
- Laboratory of Inspection and Technology of Milk and Derivatives, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, 40170-110 Bahia, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| |
Collapse
|
42
|
Tong L, Zhang X, Hao H, Liu Q, Zhou Z, Liang X, Liu T, Gong P, Zhang L, Zhai Z, Hao Y, Yi H. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients 2021; 13:3319. [PMID: 34684320 PMCID: PMC8541209 DOI: 10.3390/nu13103319] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease. Probiotics have a potential beneficial effect on the prevention of UC onset and relapse in clinical trials. Lactobacillus rhamnosus GG (L. rhamnosus GG) have shown clinical benefits on UC patients, however, the precise mechanisms are unknown. The aim of this study is to explore the effect of extracellular vesicles released from L. rhamnosus GG (LGG-EVs) on dextran sulfate sodium (DSS)-induced colitis and propose the underlying mechanism of LGG-EVs for protecting against colitis. The results showed that LGG-EVs could prevent colonic tissue damage and shortening of the colon (p < 0.01), and ameliorate intestinal inflammation by inhibiting TLR4-NF-κB-NLRP3 axis activation. Consistently, the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-2) were suppressed effectively upon LGG-EVs treatment (p < 0.05). The 16S rRNA sequencing showed that LGG-EVs administration could reshape the gut microbiota in DSS-induced colitis mice, which further alters the metabolism pathways of gut microbiota. These findings propose a novel perspective of L. rhamnosus GG in attenuating inflammation mediated by extracellular vesicles and offer consideration for developing oral gavage of LGG-EVs for colitis therapies.
Collapse
Affiliation(s)
- Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zihan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| |
Collapse
|
43
|
Chen B, Luo J, Han Y, Du H, Liu J, He W, Zhu J, Xiao J, Wang J, Cao Y, Xiao H, Song M. Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7663-7674. [PMID: 34182753 DOI: 10.1021/acs.jafc.1c03046] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the preventive effect of tangeretin (TAN), a natural flavonoid derivative from citrus fruits, on the dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. Our results showed that dietary TAN (0.04% and 0.08% w/w in the diet) significantly reduced the severity of colitis caused by DSS treatment in mice, evidenced by the increased colon length, the reduced disease activity index, and the attenuated colonic tissue damages. Moreover, dietary TAN inhibited the inflammatory response via down-regulating the overexpression of colonic inflammatory cytokines. Immunohistochemical analysis revealed that the intestinal barrier function was restored by TAN through enhancing claudin-1 and ZO-1 expressions. Additionally, dietary TAN modulated gut microbiota in colitic mice via enhancing gut microbiota diversity, ascending the level of beneficial bacteria, e.g., Lachnospiraceae and Lactobacillaceae, and descending the level of harmful bacteria, e.g., Enterobacteriaceae and Alistipes. Besides, dietary TAN promoted short-chain fatty acids production in DSS-treated mice. Altogether, these findings provided scientific evidence for the rational utilization of TAN as a preventive agent against colonic inflammation and related diseases.
Collapse
Affiliation(s)
- Bin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jiakang Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Wei He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
44
|
Kefir and Its Biological Activities. Foods 2021; 10:foods10061210. [PMID: 34071977 PMCID: PMC8226494 DOI: 10.3390/foods10061210] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/01/2023] Open
Abstract
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
Collapse
|