1
|
Sanjuan-Badillo A, P. Martínez-Castilla L, García-Sandoval R, Ballester P, Ferrándiz C, Sanchez MDLP, García-Ponce B, Garay-Arroyo A, R. Álvarez-Buylla E. HDACs MADS-domain protein interaction: a case study of HDA15 and XAL1 in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2024; 19:2353536. [PMID: 38771929 PMCID: PMC11110687 DOI: 10.1080/15592324.2024.2353536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus causing transcriptional repression. MADS-domain transcription factors are highly conserved in eukaryotes and participate in controlling diverse developmental processes in animals and plants, as well as regulating stress responses in plants. In this work, we focused on finding out putative interactions of Arabidopsis thaliana HDACs and MADS-domain proteins using an evolutionary perspective combined with bioinformatics analyses and testing the more promising predicted interactions through classic molecular biology tools. Through bioinformatic analyses, we found similarities between HDACs proteins from different organisms, which allowed us to predict a putative protein-protein interaction between the Arabidopsis thaliana deacetylase HDA15 and the MADS-domain protein XAANTAL1 (XAL1). The results of two-hybrid and Bimolecular Fluorescence Complementation analysis demonstrated in vitro and in vivo HDA15-XAL1 interaction in the nucleus. Likely, this interaction might regulate developmental processes in plants as is the case for this type of interaction in animals.
Collapse
Affiliation(s)
- Andrea Sanjuan-Badillo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Programa de Doctorado en Ciencias Biomédicas, de la Universidad Nacional Autónoma de México, Ciudad de México, México
| | - León P. Martínez-Castilla
- Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | | | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, España
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, España
| | - Maria de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
2
|
Oberti H, Gutierrez-Gonzalez J, Pritsch C. A first de novo transcriptome assembly of feijoa (Acca sellowiana [Berg] Burret) reveals key genes involved in flavonoid biosynthesis. THE PLANT GENOME 2024; 17:e20501. [PMID: 39162148 DOI: 10.1002/tpg2.20501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 08/21/2024]
Abstract
Acca sellowiana [Berg] Burret, a cultivated fruit tree originating from South America, is gaining the attention of the nutraceutical and pharmaceutical industries due to their high content of flavonoids and other phenolic compounds in fruits, leaves, and flowers. Flavonoids are a diverse group of secondary metabolites with antioxidant, anti-inflammatory, and antimicrobial properties. They also play a crucial role in plant immune response. Despite their importance, the lack of research on A. sellowiana genomics and transcriptomics hinders a deeper understanding of the molecular mechanisms behind flavonoid biosynthesis and its regulation. Here, we de novo assembled and benchmarked 11 A. sellowiana transcriptomes from leaves and floral tissues at three developmental stages using high-throughput sequencing. We selected and annotated the best assembly according to commonly used metrics and databases. This reference transcriptome consisted of 221,649 nonredundant transcripts, of which 107,612 were functionally annotated. We then used this reference transcriptome to explore the expression profiling of key secondary metabolite genes. Transcripts from genes involved in the flavonoid and anthocyanin biosynthesis pathways were identified. We also identified 4068 putative transcription factors, with the most abundant families being bHLH, C2H2, NAC, MYB, and MYB-related. Transcript expression profiling revealed distinct patterns of gene expression during flower development. Particularly, we found 71 differentially expressed transcripts representing 14 enzymes of the flavonoid pathway, suggesting major changes in flavonoid accumulation across floral stages. Our findings will contribute to understanding the genetic basis of flavonoids and provide a foundation for further research and exploitation of the economic potential of this species.
Collapse
Affiliation(s)
- Hector Oberti
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Clara Pritsch
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Bontempo P, Capasso L, De Masi L, Nebbioso A, Rigano D. Therapeutic Potential of Natural Compounds Acting through Epigenetic Mechanisms in Cardiovascular Diseases: Current Findings and Future Directions. Nutrients 2024; 16:2399. [PMID: 39125279 PMCID: PMC11314203 DOI: 10.3390/nu16152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
4
|
Bharadwaj KK, Ahmad I, Pati S, Ghosh A, Rabha B, Sarkar T, Bhattacharjya D, Patel H, Baishya D. Screening of Phytocompounds for Identification of Prospective Histone Deacetylase 1 (HDAC1) Inhibitor: An In Silico Molecular Docking, Molecular Dynamics Simulation, and MM-GBSA Approach. Appl Biochem Biotechnol 2024; 196:3747-3764. [PMID: 37776441 DOI: 10.1007/s12010-023-04731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-ABC, Balasore, 756001, Odisha, India
- NatNov Bioscience Private Limited, 756001, Balasore, Odisha, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India, 781014
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Dorothy Bhattacharjya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
5
|
Parafati M, La Russa D, Lascala A, Crupi F, Riillo C, Fotschki B, Mollace V, Janda E. Dramatic Suppression of Lipogenesis and No Increase in Beta-Oxidation Gene Expression Are among the Key Effects of Bergamot Flavonoids in Fatty Liver Disease. Antioxidants (Basel) 2024; 13:766. [PMID: 39061835 PMCID: PMC11273501 DOI: 10.3390/antiox13070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bergamot flavonoids have been shown to prevent metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and stimulate autophagy in animal models and patients. To investigate further the mechanism of polyphenol-dependent effects, we performed a RT2-PCR array analysis on 168 metabolism, transport and autophagy-related genes expressed in rat livers exposed for 14 weeks to different diets: standard, cafeteria (CAF) and CAF diet supplemented with 50 mg/kg of bergamot polyphenol fraction (BPF). CAF diet caused a strong upregulation of gluconeogenesis pathway (Gck, Pck2) and a moderate (>1.7 fold) induction of genes regulating lipogenesis (Srebf1, Pparg, Xbp1), lipid and cholesterol transport or lipolysis (Fabp3, Apoa1, Lpl) and inflammation (Il6, Il10, Tnf). However, only one β-oxidation gene (Cpt1a) and a few autophagy genes were differentially expressed in CAF rats compared to controls. While most of these transcripts were significantly modulated by BPF, we observed a particularly potent effect on lipogenesis genes, like Acly, Acaca and Fasn, which were suppressed far below the mRNA levels of control livers as confirmed by alternative primers-based RT2-PCR analysis and western blotting. These effects were accompanied by downregulation of pro-inflammatory cytokines (Il6, Tnfa, and Il10) and diabetes-related genes. Few autophagy (Map1Lc3a, Dapk) and no β-oxidation gene expression changes were observed compared to CAF group. In conclusion, chronic BPF supplementation efficiently prevents NAFLD by modulating hepatic energy metabolism and inflammation gene expression programs, with no effect on β-oxidation, but profound suppression of de novo lipogenesis.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Francesco Crupi
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Bartosz Fotschki
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| |
Collapse
|
6
|
Quintieri L, Caputo L, Nicolotti O. Recent Advances in the Discovery of Novel Drugs on Natural Molecules. Biomedicines 2024; 12:1254. [PMID: 38927461 PMCID: PMC11200856 DOI: 10.3390/biomedicines12061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) are always a promising source of novel drugs for tackling unsolved diseases [...].
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy;
| |
Collapse
|
7
|
Nimal S, Kumbhar N, Saruchi, Rathore S, Naik N, Paymal S, Gacche RN. Apigenin and its combination with Vorinostat induces apoptotic-mediated cell death in TNBC by modulating the epigenetic and apoptotic regulators and related miRNAs. Sci Rep 2024; 14:9540. [PMID: 38664447 PMCID: PMC11045774 DOI: 10.1038/s41598-024-60395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.
Collapse
Affiliation(s)
- Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
- Medical Information Management, Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Saruchi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Shriya Rathore
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Nitin Naik
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Sneha Paymal
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India.
| |
Collapse
|
8
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
9
|
Bharadwaj KK, Rabha B, Ahmad I, Mathew SP, Bhattacharjee CK, Jaganathan BG, Poddar S, Patel H, Subramaniyan V, Chinni SV, Ramachawolran G, Saleem R, Khalifa Ali EH, Abdel-Daim MM, Baishya D, Ghosh A. Rhamnetin, a nutraceutical flavonoid arrests cell cycle progression of human ovarian cancer (SKOV3) cells by inhibiting the histone deacetylase 2 protein. J Biomol Struct Dyn 2023; 42:13421-13436. [PMID: 38014451 DOI: 10.1080/07391102.2023.2275187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Overexpression of HDAC 2 promotes cell proliferation in ovarian cancer. HDAC 2 is involved in chromatin remodeling, transcriptional repression, and the formation of condensed chromatin structures. Targeting HDAC 2 presents a promising therapeutic approach for correcting cancer-associated epigenetic abnormalities. Consequently, HDAC 2 inhibitors have evolved as an attractive class of anti-cancer agents. This work intended to investigate the anti-cancer abilities and underlying molecular mechanisms of Rhamnetin in human epithelial ovarian carcinoma cells (SKOV3), which remain largely unexplored. We employed various in vitro methods, including MTT, apoptosis study, cell cycle analysis, fluorescence microscopy imaging, and in vitro enzymatic HDAC 2 protein inhibition, to examine the chemotherapeutic sensitivity of Rhamnetin in SKOV3 cells. Additionally, we conducted in silico studies using molecular docking, MD simulation, MM-GBSA, DFT, and pharmacokinetic analysis to investigate the binding interaction mechanism within Rhamnetin and HDAC 2, alongside the compound's prospective as a lead candidate. The in vitro assay confirmed the cytotoxic effects of Rhamnetin on SKOV3 cells, through its inhibition of HDAC 2 activity. Rhamnetin, a nutraceutical flavonoid, halted at the G1 phase of the cell cycle and triggered apoptosis in SKOV3 cells. Furthermore, computational studies provided additional evidence of its stable binding to the HDAC 2 protein's binding site cavity. Based on our findings, we conclude that Rhamnetin effectively promotes apoptosis and mitigates the proliferation of SKOV3 cells through HDAC 2 inhibition. These results highlight Rhamnetin as a potential lead compound, opening a new therapeutic strategy for human epithelial ovarian cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sam P Mathew
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Snikdha Poddar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Selangor, Malaysia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | - Rasha Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Eman Hussain Khalifa Ali
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurasha Srimanta Sankaradeva Viswavidyalaya, Guwahati, India
| |
Collapse
|
10
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
De Vita S, Meninno S, Capasso L, Colarusso E, Chini MG, Lauro G, Rinaldi R, De Cicco A, Sian V, Terracciano S, Nebbioso A, Lattanzi A, Bifulco G. 2-Substituted 1,5-benzothiazepine-based HDAC inhibitors exert anticancer activities on human solid and acute myeloid leukemia cell lines. Bioorg Med Chem 2023; 93:117444. [PMID: 37611334 DOI: 10.1016/j.bmc.2023.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the development of a new series of histone deacetylase inhibitors (HDACi) containing a 2-substituted 1,5-benzothiazepine scaffold. First, a virtual combinatorial library (∼1.6 × 103 items) was built according to a convenient synthetic route, and then it was submitted to molecular docking experiments on seven HDACs isoforms belonging to classes I and II. Integrated computational filters were used to select the most promising ones that were synthesized through an optimized approach, also amenable to generating both racemic and enantioenriched benzothiazepine-based derivatives. The obtained compounds showed potent HDAC inhibitory activity, especially those containing the sulphone moiety, endowed with IC50 in the nanomolar range. In addition, in vitro outcomes of our synthesized compounds demonstrated a cytotoxic effect on U937 and HCT116 cell lines and an arrest in the G2/M phase (13 ≤ IC50 ≤ 18 µM). Finally, Western blot analyses outlined the modulation of the histone acetyl markers such as H3K9/14, acetyl-tubulin, and the apoptotic indicator p21 in both cancer cell lines, disclosing a good HDAC inhibitor activity exerted by the designed items. Given the key role of HDACs in many cellular pathways, which makes these enzymes appealing and "hot" drug targets, our findings highlighted the importance of these 2-substituted 1,5-benzothiazepine-based compounds (both in the reduced and oxidized version) for the development of novel epidrugs.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Sara Meninno
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Romolo Rinaldi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Annalisa De Cicco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Veronica Sian
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138 Naples, Italy.
| | - Alessandra Lattanzi
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| |
Collapse
|
12
|
SHIRBHATE E, PANDEY J, PATEL VK, VEERASAMY R, RAJAK H. Exploration of Structure-Activity Relationship Using Integrated Structure and Ligand Based Approach: Hydroxamic Acid-Based HDAC Inhibitors and Cytotoxic Agents. Turk J Pharm Sci 2023; 20:270-284. [PMID: 37606012 PMCID: PMC10445225 DOI: 10.4274/tjps.galenos.2022.12269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for histone deacetylase (HDAC) inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anticancer activity. We have selected a dataset from earlier research findings. The target and ligand molecules were procured from recognized databases and incorporated into pivotal findings such as molecular docking (XP glide), e-pharmacophore study and 3D QSAR model designing study (phase). Docking revealed molecule 39 with better docking score and well binding contact with the protein. 3D QSAR analysis, which was performed for partial least squares factor 5 reported good 0.9877 and 0.7142 as R2 and Q2 values and low standard of deviation: 0.1049 for hypothesis AADRR.139. Based on the computational outcome, it has been concluded that molecule 39 is an effective and relevant candidate for inhibition of HDAC activity. Moreover, these computational approaches motivate to discover novel drug candidates in pharmacological and healthcare sectors.
Collapse
Affiliation(s)
- Ekta SHIRBHATE
- Guru Ghasidas University, Department of Pharmacy, Bilaspur, India
| | | | | | - Ravichandran VEERASAMY
- AIMST University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kedah, Malaysia
| | - Harish RAJAK
- Guru Ghasidas University, Department of Pharmacy, Bilaspur, India
| |
Collapse
|
13
|
Ling R, Wang J, Fang Y, Yu Y, Su Y, Sun W, Li X, Tang X. HDAC-an important target for improving tumor radiotherapy resistance. Front Oncol 2023; 13:1193637. [PMID: 37503317 PMCID: PMC10368992 DOI: 10.3389/fonc.2023.1193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Radiotherapy is an important means of tumor treatment, but radiotherapy resistance has been a difficult problem in the comprehensive treatment of clinical tumors. The mechanisms of radiotherapy resistance include the repair of sublethal damage and potentially lethal damage of tumor cells, cell repopulation, cell cycle redistribution, and reoxygenation. These processes are closely related to the regulation of epigenetic modifications. Histone deacetylases (HDACs), as important regulators of the epigenetic structure of cancer, are widely involved in the formation of tumor radiotherapy resistance by participating in DNA damage repair, cell cycle regulation, cell apoptosis, and other mechanisms. Although the important role of HDACs and their related inhibitors in tumor therapy has been reviewed, the relationship between HDACs and radiotherapy has not been systematically studied. This article systematically expounds for the first time the specific mechanism by which HDACs promote tumor radiotherapy resistance in vivo and in vitro and the clinical application prospects of HDAC inhibitors, aiming to provide a reference for HDAC-related drug development and guide the future research direction of HDAC inhibitors that improve tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, Affiliated Yancheng First Hospital of Nanjing University Medical School, First People’s Hospital of Yancheng, Yancheng, China
| | - Yuan Fang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Yu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Giordano D, Scafuri B, De Masi L, Capasso L, Maresca V, Altucci L, Nebbioso A, Facchiano A, Bontempo P. Sirtuin Inhibitor Cambinol Induces Cell Differentiation and Differently Interferes with SIRT1 and 2 at the Substrate Binding Site. Biomedicines 2023; 11:1624. [PMID: 37371719 DOI: 10.3390/biomedicines11061624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic mechanisms finely regulate gene expression and represent potential therapeutic targets. Cambinol is a synthetic heterocyclic compound that inhibits class III histone deacetylases known as sirtuins (SIRTs). The acetylating action that results could be crucial in modulating cellular functions via epigenetic regulations. The main aim of this research was to investigate the effects of cambinol, and its underlying mechanisms, on cell differentiation by combining wet experiments with bioinformatics analyses and molecular docking simulations. Our in vitro study evidenced the ability of cambinol to induce the differentiation in MCF-7, NB4, and 3T3-L1 cell lines. Interestingly, focusing on the latter that accumulated cytoplasmic lipid droplets, the first promising results related to the action mechanisms of cambinol have shown the induction of cell cycle-related proteins (such as p16 and p27) and modulation of the expression of Rb protein and nuclear receptors related to cell differentiation. Moreover, we explored the inhibitory mechanism of cambinol on human SIRT1 and 2 performing in silico molecular simulations by protein-ligand docking. Cambinol, unlike from other sirtuin inhibitors, is able to better interact with the substrate binding site of SIRT1 than with the inhibition site. Additionally, for SIRT2, cambinol partially interacts with the substrate binding site, although the inhibition site is preferred. Overall, our findings suggest that cambinol might contribute to the development of an alternative to the existing epigenetic therapies that modulate SIRTs.
Collapse
Affiliation(s)
- Deborah Giordano
- National Research Council (CNR), Institute of Food Science (ISA), Via Roma 64, 83100 Avellino, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Viviana Maresca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angelo Facchiano
- National Research Council (CNR), Institute of Food Science (ISA), Via Roma 64, 83100 Avellino, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
15
|
Phenolic compounds as histone deacetylase inhibitors: binding propensity and interaction insights from molecular docking and dynamics simulations. Amino Acids 2023:10.1007/s00726-023-03249-6. [PMID: 36781452 DOI: 10.1007/s00726-023-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Histone deacetylases are well-established target enzymes involved in the pathology of different diseases including cancer and neurodegenerative disorders. The approved HDAC inhibitor drugs are associated with cellular toxicities. Different phenolic compounds have been shown to possess inhibitory activities against HDACs and are, therefore, considered safer alternatives to synthetic compounds. Here, we elucidated the binding mode and calculated the binding propensity of some of the top phenolic compounds against different isoforms representing different classes of Zn2+ ion-containing HDACs using the molecular docking approach. Our data reaffirmed the activity of the studied phenolic compounds against HDACs. Binding interaction analysis suggested that these compounds can block the activity of HDACs with or without binding to the active site zinc metal ion. Furthermore, molecular dynamics (MD) simulations were carried out on the selected crystal and docking complexes of each selected HDAC isoform. Analysis of root-mean-square displacement (RMSD) showed that the phenolic compounds demonstrated a stable binding mode over 50 ns in a way that is comparable to the cocrystal ligands. Together, these findings can aid future efforts in the search for natural inhibitors of HDACs.
Collapse
|
16
|
Napolitano A, Di Napoli M, Castagliuolo G, Badalamenti N, Cicio A, Bruno M, Piacente S, Maresca V, Cianciullo P, Capasso L, Bontempo P, Varcamonti M, Basile A, Zanfardino A. The chemical composition of the aerial parts of Stachys spreitzenhoferi (Lamiaceae) growing in Kythira Island (Greece), and their antioxidant, antimicrobial, and antiproliferative properties. PHYTOCHEMISTRY 2022; 203:113373. [PMID: 35977603 DOI: 10.1016/j.phytochem.2022.113373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 05/27/2023]
Abstract
The Stachys L. genus has been used in traditional medicine to treat skin inflammations, stomach disorders, and stress. The aim of this study was to investigate the chemical profile and biological activity of the methanolic extract of Stachys spreitzenhoferi Heldr. (Lamiaceae) aerial parts, collected on the island of Kythira, South Greece. The analysis by liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry [LC-(-)ESI/HRMSn] of the methanol extract revealed the occurrence of thirty-six compounds - flavonoids, phenylethanoid glycosides, iridoids, quinic acid derivatives, aliphatic alcohol glycosides, and oligosaccharides - highlighting the substantial presence, as main peaks, of the iridoid melittoside (2) along with flavonoid compounds such as 4'-O-methylisoscutellarein mono-acetyl-diglycoside/chrysoeriol mono-acetyl-diglycoside (24), trimethoxy- (35) and tetramethoxyflavones (36). This extract was tested for its antimicrobial properties against Gram-positive and negative pathogenic strains. The extract was not active against Gram-negative bacteria tested, but it possessed a good dose-dependent antimicrobial activity towards S. aureus (MIC: 1.0 mg/mL) and L. monocytogenes (MIC: 1.0 mg/mL) Gram-(+) strains. Furthermore, this extract has been tested for its possible antioxidant activity in vitro. In particular, it has been shown that these molecules cause a decrease in DPPH, ABTS, and H2O2 radicals. The extract of S. spreitzenhoferi exhibited anti-DPPH activity (IC50: 0.17 mg/mL), anti-H2O2 activity (IC50: 0.125 mg/mL), and promising antiradical effect with an IC50 value of 0.18 mg/mL for anti-ABTS activity. S. spreitzenhoferi extract caused a decrease in ROS (at the concentration of 200 μg/mL) and an increase in the activity of the antioxidant enzymes SOD, CAT, and GPX in OZ-stimulated PMNs. Furthermore, it exhibited antiproliferative activity against acute myeloid leukemia (U937 cell), causing 50% of cell death at the 0.75 mg/mL.
Collapse
Affiliation(s)
- Assunta Napolitano
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Adele Cicio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy; Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy.
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| |
Collapse
|
17
|
Nieto-Figueroa KH, Gaytán-Martínez M, Loarca-Piña MGF, Campos-Vega R. Effect of drying method on the production of in vitro short-chain fatty acids and histone deacetylase mediation of cocoa pod husk. J Food Sci 2022; 87:4476-4490. [PMID: 36102033 DOI: 10.1111/1750-3841.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
We evaluated the effect of cocoa pod husk (CPH) processing (microwave [MW], forced-air drying [FAD], and FAD plus extrusion [FAD-E]), and in vitro gastrointestinal digestion on the in vitro human colonic fermentation metabolism, in vitro bioactivity on human HT-29 colon cancer cell, and the in silico mechanism of selected compounds. CPH as a substrate for human colonic microbiota significantly decrease local pH (MW -0.7, FAD -0.2, and FAD-E -0.3, 24 h) and modifies their metabolic activity (short-chain fatty acids [SCFAs] production). FAD-E generated the highest butyric (7.6 mM/L, 4 h) and FAD the highest acetic and propionic acid levels (71.4 and 36.7 mM/L, 24 h). The in vitro colonic fermented FAD-E sample (FE/FAD-E) caused HT-29 colorectal cancer cells death by inducing damage on membrane integrity and inhibiting (up to 92%) histone-deacetylase (HDAC) activity. In silico results showed that chlorogenic acid, (-)-epicatechin, and (+)-catechin, followed by butyric and propionic acids, are highly involved in the HDAC6 inhibitory activity. The results highlight the potential human health postbiotic benefits of CPH consumption, mediated by colonic microbiota-derived metabolites. PRACTICAL APPLICATION: The enormous amount of CPH (10 tons/1 ton of dry beans) generated by the cocoa industry can be used as a removable source of bioactive compounds with physicochemical functionality and health bioactivity. However, their potential applications and health benefits are insufficiently explored. CPH represents a serious disposal problem; practical and innovative ideas to use this highly available and affordable material are urgent. Research exploring their potential applications can increase the sustainability of the cocoa agro-industry. This paper highlights the value addition that can be achieved with this valuable industrial co-product, generating new functional products and ingredients.
Collapse
Affiliation(s)
- Karen Haydeé Nieto-Figueroa
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Ma Guadalupe Flavia Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| |
Collapse
|
18
|
Viet Phong N, Thi Nguyet Anh D, Yeong Chae H, Young Yang S, Jeong Kwon M, Sun Min B, Ah Kim J. Anti-inflammatory activity and cytotoxicity against ovarian cancer cell lines by amide alkaloids and piperic esters isolated from Piper longum fruits: In vitro assessments and molecular docking simulation. Bioorg Chem 2022; 128:106072. [PMID: 35944468 DOI: 10.1016/j.bioorg.2022.106072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/18/2022]
Abstract
Three new amide alkaloids, piperlongumamides D-F (14, 19, and 32); a new piperic ester, piperlongumester A (45); and two new natural compounds, methyl (2E,4Z)-5-(1,3-benzodioxol-5-yl)penta-2,4-dienoate (46) and trans-piperolein B ester (47), along with 41 known compounds were isolated from the fruits of Piper longum L. Their structures were identified by analyzing spectroscopic data, including mass spectrometry, 1D, and 2D NMR data. The anti-inflammatory and cytotoxic activities of all isolated compounds (1-47) were evaluated. Compounds 3, 6, and 19 inhibited nitric oxide production with IC50 values of 16.1 ± 0.94, 14.5 ± 0.57, and 27.3 ± 1.11 μM, respectively, whereas compound 1 exhibited strong cytotoxic activity toward three ovarian cancer cell lines A2780, TOV-112D, and SK-OV3, with IC50 values of 6.7 ± 0.77, 5.8 ± 0.29, and 48.3 ± 0.40 μM, respectively. Molecular docking simulations were performed to identify the interaction and binding mechanisms of these active metabolites with proteins related to inflammation and cancer.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Dinh Thi Nguyet Anh
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Ha Yeong Chae
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Mi Jeong Kwon
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
19
|
A Combination of Pharmacophore-Based Virtual Screening, Structure-Based Lead Optimization, and DFT Study for the Identification of S. epidermidis TcaR Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15050635. [PMID: 35631461 PMCID: PMC9146354 DOI: 10.3390/ph15050635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The transcriptional regulator (TcaR) enzyme plays an important role in biofilm formation. Prevention of TcaR-DNA complex formation leads to inhibit the biofilm formation is likely to reveal therapeutic ways for the treatment of bacterial infections. To identify the novel ligands for TcaR and to provide a new idea for drug design, two efficient drug design methods, such as pharmacophore modeling and structure-based drug design, were used for virtual screening of database and lead optimization, respectively. Gemifloxacin (FDA-approved drug) was considered to generate the pharmacophore model for virtual screening of the ZINC database, and five hits, namely ZINC77906236, ZINC09550296, ZINC77906466, ZINC09751390, and ZINC01269201, were identified as novel inhibitors of TcaR with better binding energies. Using structure-based drug design, a set of 7a–7p inhibitors of S. epidermidis were considered, and Mol34 was identified with good binding energy and high fitness score with improved pharmacological properties. The active site residues ARG110, ASN20, HIS42, ASN45, ALA38, VAL63, VAL68, ALA24, VAL43, ILE57, and ARG71 are playing a promising role in inhibition process. In addition, we performed DFT simulations of final hits to understand the electronic properties and their significant role in driving the inhibitor to adopt apposite bioactive conformations in the active site. Conclusively, the newly identified and designed hits from both the methods are promising inhibitors of TcaR, which can hinder biofilm formation.
Collapse
|
20
|
Bharadwaj KK, Ahmad I, Pati S, Ghosh A, Sarkar T, Rabha B, Patel H, Baishya D, Edinur HA, Abdul Kari Z, Ahmad Mohd Zain MR, Wan Rosli WI. Potent Bioactive Compounds From Seaweed Waste to Combat Cancer Through Bioinformatics Investigation. Front Nutr 2022; 9:889276. [PMID: 35529456 PMCID: PMC9075044 DOI: 10.3389/fnut.2022.889276] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
The seaweed industries generate considerable amounts of waste that must be appropriately managed. This biomass from marine waste is a rich source of high-value bioactive compounds. Thus, this waste can be adequately utilized by recovering the compounds for therapeutic purposes. Histone deacetylases (HDACs) are key epigenetic regulators established as one of the most promising targets for cancer chemotherapy. In the present study, our objective is to find the HDAC 2 inhibitor. We performed top-down in silico methodologies to identify potential HDAC 2 inhibitors by screening compounds from edible seaweed waste. One hundred ninety-three (n = 193) compounds from edible seaweeds were initially screened and filtered with drug-likeness properties using SwissADME. After that, the filtered compounds were followed to further evaluate their binding potential with HDAC 2 protein by using Glide high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP), and quantum polarized ligand docking (QPLD). One compound with higher negative binding energy was selected, and to validate the binding mode and stability of the complex, molecular dynamics (MD) simulations using Desmond were performed. The complex-binding free energy calculation was performed using molecular mechanics-generalized born surface area (MM-GBSA) calculation. Post-MD simulation analyses such as PCA, DCCM, and free energy landscape were also evaluated. The quantum mechanical and electronic properties of the potential bioactive compounds were assessed using the density functional theory (DFT) study. These findings support the use of marine resources like edible seaweed waste for cancer drug development by using its bioactive compounds. The obtained results encourage further in vitro and in vivo research. Our in silico findings show that the compound has a high binding affinity for the catalytic site of the HDAC 2 protein and has drug-likeness properties, and can be utilized in drug development against cancer.
Collapse
Affiliation(s)
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute-Association for Biodiversity Conservation and Research, Balasore, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, India
- *Correspondence: Debabrat Baishya
| | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kelantan, Malaysia
| | - Muhammad Rajaei Ahmad Mohd Zain
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang, Malaysia
- Muhammad Rajaei Ahmad Mohd Zain
| | - Wan Ishak Wan Rosli
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Nutrition Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Wan Ishak Wan Rosli
| |
Collapse
|
21
|
Bui HTB, Nguyen PH, Pham QM, Tran HP, Tran DQ, Jung H, Hong QV, Nguyen QC, Nguyen QP, Le HT, Yang SG. Target Design of Novel Histone Deacetylase 6 Selective Inhibitors with 2-Mercaptoquinazolinone as the Cap Moiety. Molecules 2022; 27:2204. [PMID: 35408604 PMCID: PMC9000625 DOI: 10.3390/molecules27072204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4-37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (-7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.
Collapse
Affiliation(s)
- Hue Thi Buu Bui
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Phuong Hong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quan Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Ha Noi 100000, Vietnam;
- Faculty of Chemistry; Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ha Noi 100000, Vietnam
| | - Hoa Phuong Tran
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - De Quang Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hosun Jung
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quang Vinh Hong
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quoc Cuong Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quy Phu Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hieu Trong Le
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| |
Collapse
|
22
|
Discovery of potent HDAC2 inhibitors based on virtual screening in combination with drug repurposing. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021; 11:1692. [PMID: 34827690 PMCID: PMC8615418 DOI: 10.3390/biom11111692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari Bd., 020021 Bucharest, Romania
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| |
Collapse
|
24
|
Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021; 13:pharmaceutics13111818. [PMID: 34834233 PMCID: PMC8619962 DOI: 10.3390/pharmaceutics13111818] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we are exploring the possible antidiabetic action of narirutin, a flavanone family member. The goal of the in silico research was to anticipate how narirutin would interact with eight distinct receptors implicated in diabetes control and complications, namely, dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), alpha-amylase (AAM), peroxisome proliferator-activated receptor gamma (PPAR-γ), alpha-glucosidase (AGL), while the in vitro study looked into narirutin’s possible inhibitory impact on alpha-amylase and alpha-glucosidase. The results indicate that the studied citrus flavanone interacted remarkably with most of the receptors and had an excellent inhibitory activity during the in vitro tests suggesting its potent role among the different constituent of the citrus compounds in the management of diabetes and also its complications.
Collapse
|
25
|
Bontempo P, Stiuso P, Lama S, Napolitano A, Piacente S, Altucci L, Molinari AM, De Masi L, Rigano D. Metabolite Profile and In Vitro Beneficial Effects of Black Garlic ( Allium sativum L.) Polar Extract. Nutrients 2021; 13:2771. [PMID: 34444931 PMCID: PMC8398518 DOI: 10.3390/nu13082771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Over the centuries, humans have traditionally used garlic (Allium sativum L.) as a food ingredient (spice) and remedy for many diseases. To confirm this, many extensive studies recognized the therapeutic effects of garlic bulbs. More recently, black garlic (BG), made by heat-ageing white garlic bulbs, has increased its popularity in cuisine and traditional medicine around the world, but there is still limited information on its composition and potential beneficial effects. In this study, the metabolite profile of methanol extract of BG (BGE) was determined by high-performance liquid chromatography coupled to tandem mass spectrometry in high-resolution mode. Results allowed to establish that BGE major components were sulfur derivatives, saccharides, peptides, organic acids, a phenylpropanoid derivative, saponins, and compounds typical of glycerophospholipid metabolism. Characterization of the BGE action in cancer cells revealed that antioxidant, metabolic, and hepatoprotective effects occur upon treatment as well as induction of maturation of acute myeloid leukemia cells. These results are interesting from the impact point of view of BG consumption as a functional food for potential prevention of metabolic and tumor diseases.
Collapse
Affiliation(s)
- Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (P.S.); (S.L.); (L.A.); (A.M.M.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (P.S.); (S.L.); (L.A.); (A.M.M.)
| | - Stefania Lama
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (P.S.); (S.L.); (L.A.); (A.M.M.)
| | - Assunta Napolitano
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.N.); (S.P.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.N.); (S.P.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (P.S.); (S.L.); (L.A.); (A.M.M.)
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (P.S.); (S.L.); (L.A.); (A.M.M.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Naples, Italy
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
26
|
Zakłos-Szyda M, Pietrzyk N, Kowalska-Baron A, Nowak A, Chałaśkiewicz K, Ratajewski M, Budryn G, Koziołkiewicz M. Phenolics-Rich Extracts of Dietary Plants as Regulators of Fructose Uptake in Caco-2 Cells via GLUT5 Involvement. Molecules 2021; 26:4745. [PMID: 34443333 PMCID: PMC8401051 DOI: 10.3390/molecules26164745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The latest data link the chronic consumption of large amounts of fructose present in food with the generation of hypertension and disturbances in carbohydrate and lipid metabolism, which promote the development of obesity, non-alcoholic fatty liver disease, insulin resistance, and type 2 diabetes. This effect is possible after fructose is absorbed by the small intestine cells and, to a lesser extent, by hepatocytes. Fructose transport is dependent on proteins from the family of glucose transporters (GLUTs), among which GLUT5 selectively absorbs fructose from the intestine. In this study, we examined the effect of four phenolic-rich extracts obtained from A. graveolens, B. juncea, and M. chamomilla on fructose uptake by Caco-2 cells. Extracts from B. juncea and M. chamomilla most effectively reduced fluorescent fructose analogue (NBDF) accumulation in Caco-2, as well as downregulated GLUT5 protein levels. These preparations were able to decrease the mRNA level of genes encoding transcription factors regulating GLUT5 expression-thioredoxin-interacting protein (TXNIP) and carbohydrate-responsive element-binding protein (ChREBP). Active extracts contained large amounts of apigenin and flavonols. The molecular docking simulation suggested that some of identified phenolic constituents can play an important role in the inhibition of GLUT5-mediated fructose transport.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Nina Pietrzyk
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Agnieszka Kowalska-Baron
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland;
| | - Katarzyna Chałaśkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Marcin Ratajewski
- Institute of Medical Biology, Laboratory of Epigenetics, Polish Academy of Sciences, Tylna 3a, 90-364 Łódź, Poland;
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| |
Collapse
|
27
|
Giordano D, Facchiano A, D'Auria S, Loreto F. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. eLife 2021; 10:e66741. [PMID: 34161230 PMCID: PMC8221805 DOI: 10.7554/elife.66741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Volatile organic compounds (VOCs) from 'emitting' plants inform the 'receiving' (listening) plants of impending stresses or simply of their presence. However, the receptors that allow receivers to detect the volatile cue are elusive. Most likely, plants (as animals) have odorant-binding proteins (OBPs), and in fact, a few OBPs are known to bind 'stress-induced' plant VOCs. We investigated whether these and other putative OBPs may bind volatile constitutive and stress-induced isoprenoids, the most emitted plant VOCs, with well-established roles in plant communication and defense. Molecular docking simulation experiments suggest that structural features of a few plant proteins screened in databases could allow VOC binding. In particular, our results show that monoterpenes may bind the same plant proteins that were described to bind other stress-induced VOCs, while the constitutive hemiterpene isoprene is unlikely to bind any investigated putative OBP and may not have an info-chemical role. We conclude that, as for animal, there may be plant OBPs that bind multiple VOCs. Plant OBPs may play an important role in allowing plants to eavesdrop messages by neighboring plants, triggering defensive responses and communication with other organisms.
Collapse
Affiliation(s)
| | | | - Sabato D'Auria
- Institute of Food Science, CNRAvellinoItaly
- Department of Biology, Agriculture and Food Sciences, CNRRomeItaly
| | - Francesco Loreto
- Department of Biology, University of Naples Federico IINaplesItaly
- Institute for Sustainable Plant Protection, CNRFlorenceItaly
| |
Collapse
|
28
|
Evans L, Shen Y, Bender A, Burnett LE, Li M, Habibian JS, Zhou T, Ferguson BS. Divergent and Overlapping Roles for Selected Phytochemicals in the Regulation of Pathological Cardiac Hypertrophy. Molecules 2021; 26:molecules26051210. [PMID: 33668293 PMCID: PMC7956446 DOI: 10.3390/molecules26051210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.
Collapse
Affiliation(s)
- Levi Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
- Environmental Sciences Program, University of Nevada, Reno, NV 89557, USA
| | - Yiqui Shen
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
| | - Abigail Bender
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
| | - Leah E. Burnett
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
| | - Musheng Li
- Department of Pharmacology and Physiology, University of Nevada, Reno, NV 89557, USA; (M.L.); (T.Z.)
| | | | - Tong Zhou
- Department of Pharmacology and Physiology, University of Nevada, Reno, NV 89557, USA; (M.L.); (T.Z.)
| | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA; (L.E.); (Y.S.); (A.B.); (L.E.B.)
- Environmental Sciences Program, University of Nevada, Reno, NV 89557, USA
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, NV 89557, USA
- Correspondence:
| |
Collapse
|
29
|
Virtual Screening of Natural Compounds as Potential PI 3K-AKT1 Signaling Pathway Inhibitors and Experimental Validation. Molecules 2021; 26:molecules26020492. [PMID: 33477701 PMCID: PMC7831918 DOI: 10.3390/molecules26020492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/13/2023] Open
Abstract
A computational screening for natural compounds suitable to bind the AKT protein has been performed after the generation of a pharmacophore model based on the experimental structure of AKT1 complexed with IQO, a well-known inhibitor. The compounds resulted as being most suitable from the screening have been further investigated by molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis and toxicity profiles. Two compounds selected at the end of the computational analysis, i.e., ZINC2429155 (also named STL1) and ZINC1447881 (also named AC1), have been tested in an experimental assay, together with IQO as a positive control and quercetin as a negative control. Only STL1 clearly inhibited AKT activation negatively modulating the PI3K/AKT pathway.
Collapse
|