1
|
Jiang Y, Lin H, Chen Y, Lan Y, Wang H, Li T, Hu Z, Zou S. Piezo1 contributes to alveolar bone remodeling by activating β-catenin under compressive stress. Am J Orthod Dentofacial Orthop 2024; 165:458-470. [PMID: 38189707 DOI: 10.1016/j.ajodo.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION The mechanosensitive ion channel, Piezo1, is responsible for transducing mechanical stimuli into intracellular biochemical signals and has been identified within periodontal ligament cells (PDLCs). Nonetheless, the precise biologic function of Piezo1 in the regulation of alveolar bone remodeling by PDLCs during compressive forces remains unclear. Therefore, this study focused on elucidating the role of the Piezo1 channel in alveolar bone remodeling and uncovering its underlying mechanisms. METHODS PDLCs were subjected to compressive force and Piezo1 inhibitors. Piezo1 and β-catenin expressions were quantified by quantitative reverse transcription polymerase chain reaction and Western blot. The intracellular calcium concentration was measured using Fluo-8 AM staining. The osteogenic and osteoclastic activities were assessed using alkaline phosphatase staining, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and Western blot. In vivo, orthodontic tooth movement was used to determine the effects of Piezo1 on alveolar bone remodeling. RESULTS Piezo1 and activated β-catenin expressions were upregulated under compressive force. Piezo1 inhibition reduced β-catenin activation, osteogenic differentiation, and osteoclastic activities. β-catenin knockdown reversed the increased osteogenic differentiation but had little impact on osteoclastic activities. In vivo, Piezo1 inhibition led to decreased tooth movement distance, accompanied by reduced β-catenin activation and expression of osteogenic and osteoclastic markers on the compression side. CONCLUSIONS The Piezo1 channel is a key mechanotransduction component of PDLCs that senses compressive force and activates β-catenin to regulate alveolar bone remodeling.
Collapse
Affiliation(s)
- Yukun Jiang
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hengyi Lin
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiling Chen
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanchen Lan
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiancheng Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiai Hu
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shujuan Zou
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Dawood HM, Kroeger A, Chavda V, Chapple ILC, Kebschull M. Under pressure-mechanisms and risk factors for orthodontically induced inflammatory root resorption: a systematic review. Eur J Orthod 2023; 45:612-626. [PMID: 37366151 PMCID: PMC10505745 DOI: 10.1093/ejo/cjad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND The application of orthodontic forces causes root resorption of variable severity with potentially severe clinical ramifications. OBJECTIVE To systematically review reports on the pathophysiological mechanisms of orthodontically induced inflammatory root resorption (OIIRR) and the associated risk factors based on in vitro, experimental, and in vivo studies. SEARCH METHODS We undertook an electronic search of four databases and a separate hand-search. SELECTION CRITERIA Studies reporting on the effect of orthodontic forces with/without the addition of potential risk factors on OIIRR, including (1) gene expression in in-vitro studies, the incidence root resorption in (2) animal studies, and (3) human studies. DATA COLLECTION AND ANALYSIS Potential hits underwent a two-step selection, data extraction, quality assessment, and systematic appraisal performed by duplicate examiners. RESULTS One hundred and eighteen articles met the eligibility criteria. Studies varied considerably in methodology, reporting of results, and variable risk of bias judgements.In summary, the variable evidence identified supports the notion that the application of orthodontic forces leads to (1) characteristic alterations of molecular expression profiles in vitro, (2) an increased rate of OIIRR in animal models, as well as (3) in human studies. Importantly, the additional presence of risk factors such as malocclusion, previous trauma, and medications like corticosteroids increased the severity of OIIRR, whilst other factors decreased its severity, including oral contraceptives, baicalin, and high caffeine. CONCLUSIONS Based on the systematically reviewed evidence, OIIRR seems to be an inevitable consequence of the application of orthodontic forces-with different risk factors modifying its severity. Our review has identified several molecular mechanisms that can help explain this link between orthodontic forces and OIIRR. Nevertheless, it must be noted that the available eligible literature was in part significantly confounded by bias and was characterized by substantial methodological heterogeneity, suggesting that the results of this systematic review should be interpreted with caution. REGISTRATION PROSPERO (CRD42021243431).
Collapse
Affiliation(s)
- Hassan M Dawood
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical & Dental Sciences, The University of Birmingham, Birmingham, UK
| | - Annika Kroeger
- Department of Oral Surgery, School of Dentistry, Institute of Clinical Sciences, College of Medical & Dental Sciences, The University of Birmingham, Birmingham, UK
- Birmingham Community Healthcare NHS Trust, Birmingham, UK
| | - Vinay Chavda
- Birmingham Community Healthcare NHS Trust, Birmingham, UK
| | - Iain L C Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical & Dental Sciences, The University of Birmingham, Birmingham, UK
- Birmingham Community Healthcare NHS Trust, Birmingham, UK
| | - Moritz Kebschull
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical & Dental Sciences, The University of Birmingham, Birmingham, UK
- Birmingham Community Healthcare NHS Trust, Birmingham, UK
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
4
|
Models for Oral Biology Research. Biomedicines 2022; 10:biomedicines10050952. [PMID: 35625688 PMCID: PMC9138227 DOI: 10.3390/biomedicines10050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
|
5
|
Zeng S, Huang Y, Huang W, Pathak JL, He Y, Gao W, Huang J, Zhang Y, Zhang J, Dong H. Real-Time Monitoring and Quantitative Evaluation of Resin In-Filtrant Repairing Enamel White Spot Lesions Based on Optical Coherence Tomography. Diagnostics (Basel) 2021; 11:diagnostics11112046. [PMID: 34829392 PMCID: PMC8618956 DOI: 10.3390/diagnostics11112046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to explore the feasibility of real-time monitoring and quantitative guiding the repair of enamel white spot lesions (WSLs) with resin infiltration by optical coherence tomography (OCT). Seven New Zealand rabbits were treated with 37% phosphoric acid etchant for 15 min to establish the model of enamel demineralization chalk spots of upper incisors, which were repaired by Icon resin infiltrant. OCT, stereo microscope (SM) imaging, scanning electron microscope (SEM) imaging and hematoxylin eosin (HE) staining were used to image each operation step. The changes of WSLs of enamel before and in the process of restoration with resin infiltrant showed specific performance in OCT images, which were consistent with the corresponding results of stereomicroscope and SEM. OCT can non-invasively and accurately image the whole process of repairing enamel demineralization layer with resin infiltration real-time, which can effectively guide the clinical use of resin infiltrant to repair enamel WSLs and be used as an imaging tool to evaluate the process and effect of restoration with resin infiltrant at the same time.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Yuhang Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Wenyan Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Janak L. Pathak
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Yanbing He
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Jing Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Yiqing Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
- Correspondence:
| | - Huixian Dong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China;
| |
Collapse
|