1
|
Yao H, Luo L, Li R, Zhao Y, Zhang L, Pešić M, Cai L, Li L. New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas. Biochim Biophys Acta Rev Cancer 2024; 1879:189220. [PMID: 39571764 DOI: 10.1016/j.bbcan.2024.189220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. SMAD4 gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.
Collapse
Affiliation(s)
- Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lin Cai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China..
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
2
|
Keshavarz M, Dianat-Moghadam H, Ghorbanhosseini SS, Sarshari B. Oncolytic virotherapy improves immunotherapies targeting cancer stemness in glioblastoma. Biochim Biophys Acta Gen Subj 2024; 1868:130662. [PMID: 38901497 DOI: 10.1016/j.bbagen.2024.130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Despite advances in cancer therapies, glioblastoma (GBM) remains the most resistant and recurrent tumor in the central nervous system. GBM tumor microenvironment (TME) is a highly dynamic landscape consistent with alteration in tumor infiltration cells, playing a critical role in tumor progression and invasion. In addition, glioma stem cells (GSCs) with self-renewal capability promote tumor recurrence and induce therapy resistance, which all have complicated eradication of GBM with existing therapies. Oncolytic virotherapy is a promising field of therapy that can kill tumor cells in a targeted manner. Manipulated oncolytic viruses (OVs) improve cancer immunotherapy by directly lysis tumor cells, infiltrating antitumor cells, inducing immunogenic cell death, and sensitizing immune-resistant TME to an immune-responsive hot state. Importantly, OVs can target stemness-driven GBM progression. In this review, we will discuss how OVs as a therapeutic option target GBM, especially the GSC subpopulation, and induce immunogenicity to remodel the TME, which subsequently enhances immunotherapies' efficiency.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrang Sarshari
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhao X, Ma Y, Luo J, Xu K, Tian P, Lu C, Song J. Blocking the WNT/β-catenin pathway in cancer treatment:pharmacological targets and drug therapeutic potential. Heliyon 2024; 10:e35989. [PMID: 39253139 PMCID: PMC11381626 DOI: 10.1016/j.heliyon.2024.e35989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The WNT/β-catenin signaling pathway plays crucial roles in tumorigenesis and relapse, metastasis, drug resistance, and tumor stemness maintenance. In most tumors, the WNT/β-catenin signaling pathway is often aberrantly activated. The therapeutic usefulness of inhibition of WNT/β-catenin signaling has been reported to improve the efficiency of different cancer treatments and this inhibition of signaling has been carried out using different methods including pharmacological agents, short interfering RNA (siRNA), and antibodies. Here, we review the WNT-inhibitory effects of some FDA-approved drugs and natural products in cancer treatment and focus on recent progress of the WNT signaling inhibitors in improving the efficiency of chemotherapy, immunotherapy, gene therapy, and physical therapy. We also classified these FDA-approved drugs and natural products according to their structure and physicochemical properties, and introduced briefly their potential mechanisms of inhibiting the WNT signaling pathway. The review provides a comprehensive understanding of inhibitors of WNT/β-catenin pathway in various cancer therapeutics. This will benefit novel WNT inhibitor development and optimal clinical use of WNT signaling-related drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Yunong Ma
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Kexin Xu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Peilin Tian
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Cuixia Lu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
Jin J, Guo Q, Yan Z. The Role of Lutheran/Basal Cell Adhesion Molecule in Hematological Diseases and Tumors. Int J Mol Sci 2024; 25:7268. [PMID: 39000374 PMCID: PMC11242806 DOI: 10.3390/ijms25137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Cell adhesion is a dynamic process that plays a fundamental role in cell proliferation, maintenance, differentiation, and migration. Basal cell adhesion molecule (BCAM), also known as Lutheran (Lu), belongs to the immunoglobulin superfamily of cell adhesion molecules. Lu/BCAM, which is widely expressed in red blood cells, endothelial cells, smooth muscle cells and epithelial cells across various tissues, playing a crucial role in many cellular processes, including cell adhesion, cell motility and cell migration. Moreover, Lu/BCAM, dysregulated in many diseases, such as blood diseases and various types of cancer, may act as a biomarker and target for the treatment of these diseases. This review explores the significance of Lu/BCAM in cell adhesion and its potential as a novel target for treating hematological diseases and tumors.
Collapse
Affiliation(s)
| | | | - Zhibin Yan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Q.G.)
| |
Collapse
|
6
|
Hu J, Dai C, Ding Z, Pan Y, Lu L, Bao J, Zheng J. IKBIP promotes tumor development via the akt signaling pathway in esophageal squamous cell carcinoma. BMC Cancer 2024; 24:759. [PMID: 38914958 PMCID: PMC11197280 DOI: 10.1186/s12885-024-12510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide. Inhibitor of kappa B kinase interacting protein (IKBIP) has been reported to promote glioma progression, but its role in other cancers remains unclear. This study aimed to investigate the role of IKBIP and its underlying molecular mechanisms in ESCC. METHODS The mRNA expression of IKBIP was analyzed using multiple cancer databases. Immunohistochemistry was performed to detect IKBIP protein expression in ESCC tissues and adjacent normal tissues, and Kaplan‒Meier survival and Cox regression analyses were carried out. The effects of IKBIP knockdown (or overexpression) on ESCC cells were detected by cell viability, cell migration, flow cytometry and Western blot assays. LY-294002 was used to validate the activation of the AKT signaling pathway by IKBIP. Finally, the role of IKBIP in ESCC was verified in a xenograft model. RESULTS Both bioinformatics analysis and immunohistochemistry indicated that IKBIP expression in ESCC tissues was significantly increased and was associated with the prognosis of ESCC patients. In vitro experiments revealed that IKBIP knockdown significantly inhibited the proliferation and migration of ESCC cells, and induced cell apoptosis and G1/S phase arrest. Molecular mechanism results showed that the AKT signaling pathway was further activated after IKBIP overexpression, thereby increasing the proliferation and migration abilities of ESCC cells. In vivo study confirmed that IKBIP promoted the initiation and development of ESCC tumors in mice. CONCLUSIONS IKBIP plays a tumor-promoting role in ESCC and may serve as a predictive biomarker and a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jiannan Hu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Chuanjing Dai
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Zhaoji Ding
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Yixiao Pan
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Lingxiao Lu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Jiaqian Bao
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China
| | - Jingmin Zheng
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Ximenjie, Linhai, Zhejiang Province, 317000, China.
| |
Collapse
|
7
|
Zhao Y, Liu H, Zhan Q, Jin H, Wang Y, Wang H, Huang B, Huang F, Jia X, Wang Y, Wang X. Oncolytic adenovirus encoding LHPP exerts potent antitumor effect in lung cancer. Sci Rep 2024; 14:13108. [PMID: 38849383 PMCID: PMC11161505 DOI: 10.1038/s41598-024-63325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
LHPP has been shown to be a new tumor suppressor, and has a tendency to be under-expressed in a variety of cancers. Oncolytic virotheray is a promising therapeutics for lung cancer in recent decade years. Here we successfully constructed a new recombinant oncolytic adenovirus GD55-LHPP and investigated the effect of GD55-LHPP on the growth of lung cancer cells in vitro and in vivo. The results showed that LHPP had lower expression in either lung cancer cells or clinical lung cancer tissues compared with normal cells or tissues, and GD55-LHPP effectively mediated LHPP expression in lung cancer cells. GD55-LHPP could effectively inhibit the proliferation of lung cancer cell lines and rarely affected normal cell growth. Mechanically, the oncolytic adenovirus GD55-LHPP was able to induce stronger apoptosis of lung cancer cells compared with GD55 through the activation of caspase signal pathway. Notably, GD55-LHPP also activated autophagy-related signal pathway. Further, GD55-LHPP efficiently inhibited tumor growth in lung cancer xenograft in mice and prolonged animal survival rate compared with the control GD55 or PBS. In conclusion, the novel construct GD55-LHPP provides a valuable strategy for lung cancer-targeted therapy and develop the role of tumor suppress gene LHPP in lung cancer gene therapy.
Collapse
Affiliation(s)
- Yaru Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Huihui Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Zhan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yiqiang Wang
- Surgical Department of Duchang County Second People's Hospital, Jiujiang, 332600, China
| | - Hui Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaoyan Wang
- Oncology Department, Zhejiang Xiaoshan HospitaI, Hangzhou, China.
| |
Collapse
|
8
|
Soroush A, Shahhosseini R, Ghavamikia N, Hjazi A, Roudaki S, KhalatbariLimaki M, Mirbolouk M, Pakmehr S, Karimi P. Improvement of current immunotherapies with engineered oncolytic viruses that target cancer stem cells. Cell Biochem Funct 2024; 42:e4055. [PMID: 38856033 DOI: 10.1002/cbf.4055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
The heterogeneity of the solid tumor microenvironment (TME) impairs the therapeutic efficacy of standard therapies and also reduces the infiltration of antitumor immune cells, all of which lead to tumor progression and invasion. In addition, self-renewing cancer stem cells (CSCs) support tumor dormancy, drug resistance, and recurrence, all of which might pose challenges to the eradication of malignant tumor masses with current therapies. Natural forms of oncolytic viruses (OVs) or engineered OVs are known for their potential to directly target and kill tumor cells or indirectly eradicate tumor cells by involving antitumor immune responses, including enhancement of infiltrating antitumor immune cells, induction of immunogenic cell death, and reprogramming of cold TME to an immune-sensitive hot state. More importantly, OVs can target stemness factors that promote tumor progression, which subsequently enhances the efficacy of immunotherapies targeting solid tumors, particularly the CSC subpopulation. Herein, we describe the role of CSCs in tumor heterogeneity and resistance and then highlight the potential and remaining challenges of immunotherapies targeting CSCs. We then review the potential of OVs to improve tumor immunogenicity and target CSCs and finally summarize the challenges within the therapeutic application of OVs in preclinical and clinical trials.
Collapse
Affiliation(s)
| | | | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin AbdulAziz University, Al-Kharj, Saudi Arabia
| | - Shahrzad Roudaki
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahtab Mirbolouk
- School of Pharmacy, Cyprus International University, Nicosia, North Cyprus
| | | | - Parvin Karimi
- Fars Population-Based Cancer Registry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
11
|
Li S, Li Z, Li Y, Zhu Y, Han J, Li W, Jin N, Fang J, Li X, Zhu G. A comparative study of the ability of recombinant oncolytic adenovirus, doxorubicin and tamoxifen to inhibit the proliferation of breast cancer cells. J Cell Mol Med 2022; 26:5222-5234. [PMID: 36148613 PMCID: PMC9575116 DOI: 10.1111/jcmm.17549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we compared the inhibitory effects of recombinant oncolytic adenovirus (Ad‐apoptin‐hTERTp‐E1a, Ad‐VT) with that of doxorubicin (DOX), a first‐line chemotherapy drug, and tamoxifen (TAM), an endocrine therapy drug, on the proliferation of breast cancer cells. We found that Ad‐VT could effectively inhibit the proliferation of breast cancer cells (p < 0.01); the inhibition rate of Ad‐VT on normal mammary epithelial MCF‐10A cells was less than 20%. DOX can effectively inhibit the proliferation of breast cancer cells and also has a strong inhibitory effect on MCF‐10A cells (p < 0.01). TAM also has a strong inhibitory effect on breast cancer cells, among which the oestrogen‐dependent MCF‐7 cell inhibition was stronger (p < 0.01), At higher concentrations, TAM also had a high rate of inhibition (>70%) on the proliferation of MCF‐10A cells. We also found that both recombinant adenovirus and both drugs could successfully induce tumour cell apoptosis. Further Western blot results showed that the recombinant adenovirus killed breast cancer cells through the endogenous apoptotic pathway. Analysis of the nude mouse subcutaneous breast cancer model showed that Ad‐VT significantly inhibited tumour growth (the luminescence rate of cancer cells was reduced by more than 90%) and improved the survival rate of tumour‐bearing mice (p < 0.01). Compared with DOX and TAM, Ad‐VT has a significant inhibitory effect on breast cancer cells, but almost no inhibitory effect on normal breast epithelial cells, and this inhibitory effect is mainly through the endogenous apoptotic pathway. These results indicate that Ad‐VT has significant potential as a drug for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shanzhi Li
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuoxin Li
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yiquan Li
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Yilong Zhu
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jicheng Han
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Wenjie Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinbo Fang
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Xiao Li
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangze Zhu
- Academiciann Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Huang L, Zhao H, Shan M, Chen H, Xu B, He Y, Zhao Y, Liu Z, Chen J, Xu Q. Oncolytic adenovirus H101 ameliorate the efficacy of anti-PD-1 monotherapy in colorectal cancer. Cancer Med 2022; 11:4575-4587. [PMID: 35762456 PMCID: PMC9741988 DOI: 10.1002/cam4.4845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade therapy with anti-programmed cell death (PD)-1 antibodies provides therapeutic effect for many patients of various cancers but remains inadequate in colorectal cancer (CRC) patients. The present study aims to assess the efficacy of oncolytic adenovirus (OncoAd ) in enhancing the anti-PD-1 treatment of CRC. METHODS The estimating relative subsets of RNA transcripts algorithm was used for estimating the infiltrated immune cells in melanoma and CRC tissues. The efficacy of OncoAd with anti-PD-1 monotherapy was performed in a CT26 CRC mouse model in vivo. Flow cytometric analysis of peripheral blood and tumor tissues determined the difference anti-tumor immune efficacy of OncoAd with anti-PD-1 monotherapy. RESULTS The Cancer Genome Atlas database indicated that CD8+ T cells and regulatory T cells were significantly elevated in melanoma compared to CRC cohorts. Moreover, intratumor injection of oncolytic adenovirus enhanced T cell infiltration and decreased Treg percentages in the CT26 CRC colorectal cancer mouse model. Combinatorial OncoAd with anti-PD-1 antibody treatment markedly enhanced the anti-tumor efficacy of anti-PD-1 by significantly decreasing the tumor volume and reducing tumor growth in a CRC mouse model. To the end, OncoAd treatment increased the CD8/Treg ratio, indicating that OncoAd intratumor injection ameliorate the anti-tumor immune response of anti-PD-1 therapy. CONCLUSION The present study elucidates that OncoAd promotes intratumor T cell infiltration and improves anti-PD-1 immunotherapy, thereby providing a potent combinatorial therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Tongji University Cancer CenterShanghaiChina
| | - Huaxin Zhao
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Tongji University Cancer CenterShanghaiChina
| | | | - Hong Chen
- Department of Gastrointestinal SurgeryFujian Provincial HospitalFuzhouChina
| | - Bin Xu
- Department of General Surgery, Shanghai Tenth People's HospitalTongji University School of MedicineShangaiChina
| | - Yang He
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Tongji University Cancer CenterShanghaiChina
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Tongji University Cancer CenterShanghaiChina
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Tongji University Cancer CenterShanghaiChina
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Tongji University Cancer CenterShanghaiChina,Anhui Medical UniversityHeFeiChina
| |
Collapse
|
13
|
Shuang Y, Yao X, Liu J, Niu J, Guo W, Li C. Serum-derived extracellular vesicles mediate Smad4 expression through shuttling microRNA-27a in the progression of laryngeal squamous cell carcinoma. Hum Cell 2022; 35:1084-1099. [PMID: 35545731 DOI: 10.1007/s13577-022-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
Serum-derived extracellular vesicles (EVs) containing non-coding RNAs have been indicated to serve as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma (LSCC), while their functional role remains to be explored. Here, we summarize the possible mechanism explaining the laryngeal carcinogenesis and the associated changes with the involvement of extracellular microRNA (miR)-27a from serum of LSCC patients. Serum-derived EVs from LSCC patients were found to increase the proliferative activity and decreased the apoptotic activity of LSCC cells. miRNA microarrays revealed that miR-27a expression was elevated after EV treatment. miR-27a expression was elevated in LSCC tissues and predicted a poor prognosis for patients. Downregulation of miR-27a inhibited the effect of EVs to reduce the activity of LSCC cells in vitro and to suppress tumor development in vivo. miR-27a targeted SMAD family member 4 (Smad4) to mediate the Wnt/β-catenin pathway, which was induced under the influence of EVs. Smad4 was downregulated in LSCC tissues, and simultaneous overexpression of miR-27a and Smad4 resulted in reduced cell activity and tumorigenicity. In conclusion, serum-derived EVs support the laryngeal carcinogenesis at least partially via transferring miR-27a. miR-27a targets Smad4 and is a biomarker to predict LSCC prognosis.
Collapse
Affiliation(s)
- Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China.
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjing, 300202, People's Republic of China
| | - Jing Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Juntao Niu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Wenyu Guo
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| |
Collapse
|
14
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
15
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
16
|
Ghasemi K, Ghasemi K. A Brief look at antitumor effects of doxycycline in the treatment of colorectal cancer and combination therapies. Eur J Pharmacol 2022; 916:174593. [PMID: 34973952 DOI: 10.1016/j.ejphar.2021.174593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is considered the second most frequent cancer globally and one of the deadliest malignancies in humans. On the other hand, over time and facing the challenges of cancer treatment, several therapeutic approaches, including surgery, radiotherapy, chemotherapy, and immunotherapy, are being developed. Evidence showed that combination therapies had given relatively satisfactory clinical outcomes in inhibiting tumor progression and increasing patient survival compared with monotherapy. Among the available compounds and drugs used in chemotherapy, doxycycline, an antimicrobial drug, has been suitable for treating several malignancies such as CRC. It has been revealed that doxycycline has anti-tumor properties and can help control tumor growth in various mechanisms, such as inhibiting anti-apoptotic and angiogenic proteins. In addition, studies have shown that combination therapy with doxycycline and other anti-tumor drugs, such as doxorubicin, anti-angiogenic factors, and anti-check-point blockers, can inhibit tumor progression. Therefore, this review summarized the anti-tumor mechanisms of doxycycline in CRC treatment and related combination therapies.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Dai CJ, Cao YT, Huang F, Wang YG. Multiple roles of mothers against decapentaplegic homolog 4 in tumorigenesis, stem cells, drug resistance, and cancer therapy. World J Stem Cells 2022; 14:41-53. [PMID: 35126827 PMCID: PMC8788178 DOI: 10.4252/wjsc.v14.i1.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-β signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-β/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.
Collapse
Affiliation(s)
- Chuan-Jing Dai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yu-Ting Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People’s Hospital of Hangzhou Medical University, Hangzhou 310014, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
18
|
Park JS, Lee ME, Jang WS, Kim J, Park SM, Oh K, Lee N, Ham WS. Systemic Injection of Oncolytic Vaccinia Virus Suppresses Primary Tumor Growth and Lung Metastasis in Metastatic Renal Cell Carcinoma by Remodeling Tumor Microenvironment. Biomedicines 2022; 10:173. [PMID: 35052851 PMCID: PMC8773601 DOI: 10.3390/biomedicines10010173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors and tyrosine kinase inhibitors are the first-line treatment for metastatic renal cell carcinoma (mRCC), but their benefits are limited to specific patient subsets. Here, we aimed to evaluate the therapeutic efficacy of JX-594 (pexastimogene devacirepvec, Pexa-vec) monotherapy by systemic injection in comparison with sunitinib monotherapy in metastatic orthotopic RCC murine models. Two highly metastatic orthotopic RCC models were developed to compare the treatment efficacy in the International Metastatic RCC Database Consortium favorable-risk and intermediate- or poor-risk groups. JX-594 was systemically injected through the peritoneum, whereas sunitinib was orally administered. Post-treatment, tumor microenvironment (TME) remodeling was determined using immunofluorescence analysis. Systemic JX-594 monotherapy injection demonstrated therapeutic benefit in both early- and advanced-stage mRCC models. Sunitinib monotherapy significantly reduced the primary tumor burden and number of lung metastases in the early-stage, but not in the advanced-stage mRCC model. Systemic JX-594 delivery remodeled the primary TME and lung metastatic sites by increasing tumor-infiltrating CD4/8+ T cells and dendritic cells. Systemic JX-594 monotherapy demonstrated significantly better therapeutic outcomes compared with sunitinib monotherapy in both early- and advanced-stage mRCCs by converting cold tumors into hot tumors. Sunitinib monotherapy effectively suppressed primary tumor growth and lung metastasis in early-stage mRCC.
Collapse
Affiliation(s)
- Jee Soo Park
- Department of Urology, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (J.K.); (S.M.P.)
- Department of Urology, Sorokdo National Hospital, Goheung 59562, Korea
| | - Myung Eun Lee
- Department of Urology, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (J.K.); (S.M.P.)
| | - Won Sik Jang
- Department of Urology, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (J.K.); (S.M.P.)
| | - Jongchan Kim
- Department of Urology, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (J.K.); (S.M.P.)
- Department of Urology, Yongin Severance Hospital, Yonsei University Health System, Seoul 03722, Korea
| | - Se Mi Park
- Department of Urology, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (J.K.); (S.M.P.)
| | - Keunhee Oh
- Research Center, SillaJen, Inc., Seoul 07325, Korea; (K.O.); (N.L.)
| | - Namhee Lee
- Research Center, SillaJen, Inc., Seoul 07325, Korea; (K.O.); (N.L.)
| | - Won Sik Ham
- Department of Urology, Urological Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea; (J.S.P.); (M.E.L.); (W.S.J.); (J.K.); (S.M.P.)
| |
Collapse
|
19
|
Huang F, Chen WY, Ma J, He XL, Wang JW. Paradoxical role of interleukin-33/suppressor of tumorigenicity 2 in colorectal carcinogenesis: Progress and therapeutic potential. World J Clin Cases 2022; 10:23-34. [PMID: 35071502 PMCID: PMC8727260 DOI: 10.12998/wjcc.v10.i1.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is presently the second most prevalent global mortality-inducing cancer. CRC carcinogenesis is a multifactorial process involving internal genetic mutations and the external environment. In addition, non-neoplastic cell activities within tumor microenvironments for CRC development have been established. However, interleukin (IL)-33, secreted by such cell types, plays a pivotal role in cancer progression due to interaction with cellular constituents within the tumor-inflammation microenvironment. IL-33 belongs to the IL-1 cytokine family and acts as binding attachments for the suppressor of tumorigenicity (ST)2 receptor. Therefore, how to coordinate tumor microenvironment, design and optimize treatment strategies suitable for CRC, based on IL-33/ST2 signal is a challenge. Even though it has established influences upon immunity-linked conditions, IL-33 effects on CRC progression and prevention and related mechanisms are still controversial. Our review depicts controversial activities for IL-33/ST2 within carcinogenesis and cancer prevention. Moreover, IL-33/ST2 signaling is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Wan-Yuan Chen
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Jie Ma
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Xiang-Lei He
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Jian-Wei Wang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
20
|
Sun X, Xue D, Zhang K, Jiang F, Li D. Acrid-release and bitter-downbearing therapy and banxia xiexin decoction regulate Wnt/β-catenin pathway, inhibit proliferation and invasion, and induce apoptosis in gastric cancer cells. Am J Transl Res 2021; 13:6211-6220. [PMID: 34306360 PMCID: PMC8290735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the efficacy of the acrid-release and bitter-downbearing therapy and Banxia Xiexin Decoction (BXD) in treating gastric cancer (GC). METHODS BXD was decocted, and serum containing medicine was prepared from rats. The SNU-16 cells were cultured with different concentrations of BXD serum (25, 50, 100 μL/mL). Then, those were treated with BXD and Wnt/β-catenin pathway activator (LiCl) and divided into three groups: Control group, BXD group and BXD+LiCl group. Activation of the Wnt/β-catenin pathway was detected by immunofluorescence staining, qRT-PCR, and western blot. Cell activity, clone formation, invasion, metastasis and apoptosis in each group were examined by MTT, clone formation test, Transwell and flow cytometry. The oxidative stress measures in cells of each group were tested by an oxidative stress kit. RESULTS With increasing BXD concentration, the clonogenic ability of cells was inhibited. BXD can inhibit cell activity, clone formation, invasion and metastasis, promote oxidative stress, and induce apoptosis. It can also inhibit the activation of Wnt/β-catenin signaling pathway. A Wnt/β-catenin signaling pathway activator could partially inhibit the action of BXD. CONCLUSION BXD participates in GC treatment by inhibiting Wnt/β-catenin signaling pathway, thus inhibiting GC cell activity and clone formation, promoting oxidative stress, and inducing apoptosis.
Collapse
Affiliation(s)
- Xiaofen Sun
- Department of Gastroenterology, The 943 Hospital of The Joint Logistics Support Unit of The Chinese People’s Liberation ArmyWuwei, Gansu Province, China
| | - Dewen Xue
- Department of Nephrology, The 943 Hospital of The Joint Logistics Support Unit of The Chinese People’s Liberation ArmyWuwei, Gansu Province, China
| | - Kanru Zhang
- Department of Gastroenterology, The 943 Hospital of The Joint Logistics Support Unit of The Chinese People’s Liberation ArmyWuwei, Gansu Province, China
| | - Fang Jiang
- Department of Outpatient, The 943 Hospital of The Joint Logistics Support Unit of The Chinese People’s Liberation ArmyWuwei, Gansu Province, China
| | - Duoqiao Li
- Department of Gastroenterology, The 943 Hospital of The Joint Logistics Support Unit of The Chinese People’s Liberation ArmyWuwei, Gansu Province, China
| |
Collapse
|
21
|
Guo ZS. Oncolytic Virus Immunotherapy: Showcasing Impressive Progress in Special Issue II. Biomedicines 2021; 9:biomedicines9060663. [PMID: 34200560 PMCID: PMC8226691 DOI: 10.3390/biomedicines9060663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Zong-Sheng Guo
- UPMC Hillman Cancer Center and Departments of Surgery, Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|