1
|
Mao L, Sonbati SM, Schneider JW, Robinson AS. Autophagy and Akt-Stimulated Cellular Proliferation Synergistically Improve Antibody Production in CHO Cells. Biotechnol J 2024; 19:e202400033. [PMID: 39623740 PMCID: PMC11612535 DOI: 10.1002/biot.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
Over the past decade, engineered producer cell lines have led 10-fold increases in antibody yield, based on an improved understanding of the cellular machinery influencing cell health and protein production. With prospects for further production improvements, increased antibody production would enable a significant cost reduction for life-saving therapies. In this study, we strategized methods to increase cell viability and the resulting cell culture duration to improve production lifetimes. By overexpressing the cell surface adenosine A2A receptor (A2AR), the Akt pathway was activated, resulting in improved cellular proliferation. Alternatively, by inducing autophagy through temperature downshift, we were able to significantly enhance cellular-specific productivity, with up to a three-fold increase in total antibody production as well as three-fold higher cell-specific productivity. Interestingly, the expression levels of the autophagy pathway protein Beclin-1 appeared to correlate best with the total antibody production, of autophagy-related proteins examined. Thus, during cell clonal development Beclin-1 levels may serve as a marker to screen for conditions that optimize antibody titer.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | | | - James W. Schneider
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Anne S. Robinson
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Kaur G, Verma SK, Singh D, Singh NK. Role of G-Proteins and GPCRs in Cardiovascular Pathologies. Bioengineering (Basel) 2023; 10:bioengineering10010076. [PMID: 36671648 PMCID: PMC9854459 DOI: 10.3390/bioengineering10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell signaling is a fundamental process that enables cells to survive under various ecological and environmental contexts and imparts tolerance towards stressful conditions. The basic machinery for cell signaling includes a receptor molecule that senses and receives the signal. The primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter, etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma membrane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various biochemical activities. G-protein-coupled signaling regulates different physiological functions in the targeted cell types. This review article discusses G-proteins' signaling and regulation functions and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke, and peripheral artery disease.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Deepak Singh
- Lloyd Institute of Engineering and Technology, Greater Noida 201306, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
4
|
Skopál A, Kéki T, Tóth PÁ, Csóka B, Koscsó B, Németh ZH, Antonioli L, Ivessa A, Ciruela F, Virág L, Haskó G, Kókai E. Cathepsin D interacts with adenosine A 2A receptors in mouse macrophages to modulate cell surface localization and inflammatory signaling. J Biol Chem 2022; 298:101888. [PMID: 35367412 PMCID: PMC9065627 DOI: 10.1016/j.jbc.2022.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine A2A receptor (A2AR)–dependent signaling in macrophages plays a key role in the regulation of inflammation. However, the processes regulating A2AR targeting to the cell surface and degradation in macrophages are incompletely understood. For example, the C-terminal domain of the A2AR and proteins interacting with it are known to regulate receptor recycling, although it is unclear what role potential A2AR-interacting partners have in macrophages. Here, we aimed to identify A2AR-interacting partners in macrophages that may effect receptor trafficking and activity. To this end, we performed a yeast two-hybrid screen using the C-terminal tail of A2AR as the “bait” and a macrophage expression library as the “prey.” We found that the lysosomal protease cathepsin D (CtsD) was a robust hit. The A2AR–CtsD interaction was validated in vitro and in cellular models, including RAW 264.7 and mouse peritoneal macrophage (IPMΦ) cells. We also demonstrated that the A2AR is a substrate of CtsD and that the blockade of CtsD activity increases the density and cell surface targeting of A2AR in macrophages. Conversely, we demonstrate that A2AR activation prompts the maturation and enzymatic activity of CtsD in macrophages. In summary, we conclude that CtsD is a novel A2AR-interacting partner and thus describe molecular and functional interplay that may be crucial for adenosine-mediated macrophage regulation in inflammatory processes.
Collapse
Affiliation(s)
- Adrienn Skopál
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kéki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Á Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Balázs Koscsó
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA.
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Schreiner TG, Popescu BO. Impact of Caffeine on Alzheimer’s Disease Pathogenesis—Protective or Risk Factor? Life (Basel) 2022; 12:life12030330. [PMID: 35330081 PMCID: PMC8952218 DOI: 10.3390/life12030330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), the most common dementia worldwide, remains without an effective treatment to this day despite intensive research conducted during the last decades. In this context, researchers have turned their attention towards the prevention of this pathology, focusing on early detection and better control of the most important risk factors, concomitantly with trying to find potentially protective factors that may delay the onset of AD. From the multitude of factors studied, coffee (especially its main component, caffeine) is a current interesting research topic, taking into consideration the contradictory results of recent years’ studies. On the one hand, much of the evidence from fundamental research suggests the potentially protective trait of caffeine in AD, while other data mainly from human studies lean toward no correlation or even suggesting that caffeine is a veritable risk factor for dementia. Given the methodological heterogeneity of the studies, this review aims to bring new evidence regarding this topic and to try to clearly establish a correlation between the two entities. Thus, in the first part, the authors make a clear distinction between the effects of coffee and the effects of caffeine in AD, presenting a rich basis of clinical trials on both animal models and the human subject. Subsequently, the main pathophysiological mechanisms that would explain the action of caffeine in the etiopathogenesis of AD are reviewed. Finally, the role of computational models is presented, having beneficial impact on both better understanding of the disease mechanism and the development of new therapeutic approaches for AD prevention.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Department of Neurology, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
- Correspondence:
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|