1
|
Mahaki H, Nobari S, Tanzadehpanah H, Babaeizad A, Kazemzadeh G, Mehrabzadeh M, Valipour A, Yazdinezhad N, Manoochehri H, Yang P, Sheykhhasan M. Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights. Biomed Pharmacother 2025; 186:118023. [PMID: 40164047 DOI: 10.1016/j.biopha.2025.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression and metastasis, with vascular endothelial growth factor (VEGF) signaling serving as a key regulator of tumor angiogenesis and immune evasion. VEGF induces abnormal blood vessel formation, promoting tumor growth, immune suppression, and metastasis through epithelialmesenchymal transition (EMT). As a result, VEGF signaling has become a critical therapeutic target in cancer treatment. This review examines the molecular mechanisms driving VEGF-mediated tumor growth and angiogenesis, with a focus on the interaction between tumor and endothelial cells and the dual role of VEGF in fostering vascularization and immune suppression. Current anti-VEGF therapies, including monoclonal antibodies (e.g., bevacizumab) and tyrosine kinase inhibitors (TKIs), have demonstrated efficacy and have received FDA approval for various cancers; however, therapeutic resistance remains a significant challenge. Strategies to overcome resistance, such as novel VEGF inhibitors, vascular normalization approaches, and combination therapies with immune checkpoint inhibitors, have been explored. Additionally, future directions emphasize the need for personalized approaches to improve treatment efficacy and reduce metastasis. A comprehensive understanding of VEGF signaling in the TME may pave the way for more effective cancer therapies.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Nobari
- Deputy of Health, Iran University of Medical Science, Tehran, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamhosein Kazemzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Mehrabzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Valipour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nader Yazdinezhad
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Azarian M, Ramezani Farani M, C Cho W, Asgharzadeh F, Yang YJ, Moradi Binabaj M, M Tambuwala M, Farahani N, Hushmandi K, Huh YS. Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches. Pathol Res Pract 2024; 264:155706. [PMID: 39527908 DOI: 10.1016/j.prp.2024.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
Collapse
Affiliation(s)
- Maryam Azarian
- Department of Bioanalytical Ecotoxicology,UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yu-Jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Meldrum KL, Swansiger AK, Koscho J, Miller L, Sausen J, Maus AD, Ladwig PM, Willrich MAV, Prell JS. Gábor Transform-Based Antibody Quantitation in Serum: An Interlaboratory Liquid Chromatography/High-Resolution Mass Spectrometry Investigation. Anal Chem 2024; 96:17413-17422. [PMID: 39412157 DOI: 10.1021/acs.analchem.4c04470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Therapeutic monoclonal antibodies (t-mAbs) are crucial for treating various conditions, including cancers and autoimmune disorders. Accurate quantitation and pharmacokinetic monitoring of t-mAbs in serum are essential, but current methods like ligand binding assays (LBAs) and bottom-up peptide liquid chromatography-tandem mass spectrometry (LC-MS/MS) can lack the sensitivity and specificity needed to meet clinical demands. Emerging techniques using high-resolution mass spectrometry (HRMS) in top-down and middle-up approaches offer improved ability to accurately quantify mAb proteoforms apart from degradation products by keeping the sample proteins intact or minimizing digestion. This study describes the first use of Gábor transform (GT)-based iFAMS Quant+ software to quantify a t-mAb (vedolizumab) from ∼400 samples using an Agilent 6545XT AdvanceBio Q-TOF at the University of Oregon. These results are compared to a previously validated laboratory-developed test (LDT) from Mayo Clinic utilizing a Thermo Q Exactive Plus Orbitrap. The Mayo method used conventional extracted ion chromatograms (XICs) of select charge states for quantitation, while the iFAMS Quant+ method utilized GT-based charge state deconvolution, background subtraction, and signal integration. Calibration and quality control (QC) analyses and Passing-Bablok regression of 351 subject samples demonstrated excellent agreement between the two methods. The iFAMS Quant+ workflow exhibited unique advantages for characterizing interferents and analyte signal anomalies due to its deconvolution-based approach.
Collapse
Affiliation(s)
- Kayd L Meldrum
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Andrew K Swansiger
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Jacob Koscho
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lily Miller
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - John Sausen
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Anthony D Maus
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Paula M Ladwig
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
4
|
Bourgeois NM, Wei L, Ho NNT, Neal ML, Seferos D, Tongogara T, Mast FD, Aitchison JD, Kaushansky A. Multiple receptor tyrosine kinases regulate dengue infection of hepatocytes. Front Cell Infect Microbiol 2024; 14:1264525. [PMID: 38585651 PMCID: PMC10995305 DOI: 10.3389/fcimb.2024.1264525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nhi N. T. Ho
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Denali Seferos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Tinotenda Tongogara
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Shebbo S, Binothman N, Darwaish M, Niaz HA, Abdulal RH, Borjac J, Hashem AM, Mahmoud AB. Redefining the battle against colorectal cancer: a comprehensive review of emerging immunotherapies and their clinical efficacy. Front Immunol 2024; 15:1350208. [PMID: 38533510 PMCID: PMC10963412 DOI: 10.3389/fimmu.2024.1350208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Salima Shebbo
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Najat Binothman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manar Darwaish
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hanan A. Niaz
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Strategic Research and Innovation Laboratories, Taibah University, Madinah, Saudi Arabia
- College of Applied Medical Sciences, Taibah University, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
6
|
Ying Li CM, Li R, Drew P, Price T, Smith E, Maddern GJ, Tomita Y, Fenix K. Clinical application of cytokine-induced killer (CIK) cell therapy in colorectal cancer: Current strategies and future challenges. Cancer Treat Rev 2024; 122:102665. [PMID: 38091655 DOI: 10.1016/j.ctrv.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health burden and is the second leading cause of cancer-related death. Cytokine induced killer (CIK) cell therapy is an immunotherapy which has the potential to meet this need. Clinical trials of CIK cell therapy for the management of CRC have reported improved clinical outcomes. However, production and delivery protocols varied significantly, and many studies were reported only in Chinese language journals. Here we present the most comprehensive review of the clinical CIK cell therapy trials for CRC management to date. We accessed both English and Chinese language clinical studies, and summarise how CIK cell therapy has been implemented, from manufacturing to patient delivery. We discuss current challenges that impede wider adoption of CIK cell therapy in CRC management.
Collapse
Affiliation(s)
- Celine Man Ying Li
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Runhao Li
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Paul Drew
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Timothy Price
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Eric Smith
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Guy J Maddern
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Yoko Tomita
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; Medical Oncology, The Queen Elizabeth Hospital and The University of Adelaide, Woodville, SA 5011, Australia
| | - Kevin Fenix
- Department of Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| |
Collapse
|
7
|
Chauhan S, Sharma S. Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review. Curr Pharm Biotechnol 2024; 25:1969-1985. [PMID: 38275054 DOI: 10.2174/0113892010270975231208113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 01/27/2024]
Abstract
Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Sonia Chauhan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P, 201306, India
| | - Sakshi Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P, 201306, India
| |
Collapse
|
8
|
Kasi PM, Afable MG, Herting C, Lukanowski M, Jin Z. Anti-EGFR Antibodies in the Management of Advanced Colorectal Cancer. Oncologist 2023; 28:1034-1048. [PMID: 37774394 PMCID: PMC11025386 DOI: 10.1093/oncolo/oyad262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, and incidence is rising in younger individuals. Anti-EGFR antibodies, including cetuximab and panitumumab, have been incorporated into standard-of-care practice for patients with advanced disease. Herein, we review the molecular characteristics of these agents and the trials that lead to their approvals. Further, we discuss clinical implications of data regarding biomarkers that dictate treatment selection, different dosing strategies, and side effect management. Finally, we look towards the future and describe contexts in which these agents are currently being investigated clinically with a focus on combinations with MAPK-targeted therapies and immunotherapy. Overall, this review provides historical context, current clinical usage, and future directions for anti-EGFR antibodies in advanced colorectal cancer.
Collapse
Affiliation(s)
- Pashtoon Murtaza Kasi
- Department of Oncology/Hematology, Division of Internal Medicine, Weill Cornell Medicine, Meyer Cancer Center, Englander Institute of Precision Medicine, New York, NY, USA
| | | | - Cameron Herting
- Medical Affairs, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Angulo-Aguado M, Orjuela-Amarillo S, Mora-Jácome JF, Córdoba LP, Gallego-Ortiz A, Gaviria-Sabogal CC, Contreras N, Figueroa C, Ortega-Recalde O, Morel A, Fonseca-Mendoza DJ. Functional analysis of CTLA4 promoter variant and its possible implication in colorectal cancer immunotherapy. Front Med (Lausanne) 2023; 10:1160368. [PMID: 37601778 PMCID: PMC10436101 DOI: 10.3389/fmed.2023.1160368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent cancer, ranking as the third most common. Recent advances in our understanding of the molecular causes of this disease have highlighted the crucial role of tumor immune evasion in its initiation and progression. CTLA4, a receptor that acts as a negative regulator of T cell responses, plays a pivotal role in this process, and genetic variations in CTLA4 have been linked to CRC susceptibility, prognosis, and response to therapy. Methods We conducted a case-control study involving 98 CRC patients and 424 controls. We genotyped the CTLA4 c.-319C > T variant (rs5742909) and performed an association analysis by comparing allele frequencies between the patients and controls. To assess the potential functional impact of this variant, we first performed an In Silico analysis of transcription factor binding sites using Genomatix. Finally, to validate our findings, we conducted a luciferase reporter gene assay using different cell lines and an electrophoretic mobility shift assay (EMSA). Results The case-control association analysis revealed a significant association between CTLA4 c.-319C > T and CRC susceptibility (p = 0.023; OR 1.89; 95% CI = 1.11-3.23). Genomatix analysis identified LEF1 and TCF7 transcription factors as specific binders to CTLA4 c.-319C. The reporter gene assay demonstrated notable differences in luciferase activity between the c.-319 C and T alleles in COS-7, HCT116, and Jurkat cell lines. EMSA analysis showed differences in TCF7 interaction with the CTLA4 C and T alleles. Conclusion CTLA4 c.-319C > T is associated with CRC susceptibility. Based on our functional validation results, we proposed that CTLA4 c.-319C > T alters gene expression at the transcriptional level, triggering a stronger negative regulation of T-cells and immune tumoral evasion.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Sarah Orjuela-Amarillo
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Julián Francisco Mora-Jácome
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Lea Paloma Córdoba
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Antonio Gallego-Ortiz
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Cristian Camilo Gaviria-Sabogal
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Nora Contreras
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Carlos Figueroa
- Departamento de Coloproctología, Hospital Universitario Mayor-Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Adrien Morel
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Universidad Del Rosario, School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), Bogotá, Colombia
| |
Collapse
|
10
|
Okoye C, Tran M, Soladoye E, Akahara DE, Emeasoba CM, Ojinna BT, Anasonye E, Obadare OO, Diala CS, Salaudeen BH, Evbayekha EO, Okobi OE. A Review of 10-Year Survivability of Immunotherapy in the Management of Colon Cancer. Cureus 2023; 15:e43189. [PMID: 37692610 PMCID: PMC10485874 DOI: 10.7759/cureus.43189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Colon cancer is one of the most common cancers in the United States of America. In addition to conventional treatment approaches such as surgery, chemotherapy, and radiation for colorectal cancer, immunotherapy has gained recognition over the past few years. However, its effectiveness in colorectal cancer treatment is controversial. Our study investigates the survival and progression-free rates of immunotherapy for different types of colorectal cancer over the last 10 years. We conducted literature reviews from various clinical trials and research studies to evaluate immunotherapy's role in colorectal cancer treatment. We also investigated how it affects clinical outcomes. We discovered a range of effective immunotherapy approaches targeting various growth factors and signaling pathways. These modalities include monoclonal antibodies aimed at growth factors such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), human epidermal growth factor receptor 2 (HER2), and downstream signaling pathways such as mitogen-activated protein kinase (MAPK), kirsten rat sarcoma viral oncogene (KRAS), B-raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatase and tensin homolog (PTEN). Additionally, we identified immune checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitors and programmed cell death ligand 1 (PD-L1) inhibitors, as well as target therapy and adoptive cell therapy as promising immunotherapeutic options. Nevertheless, the application of immunotherapy remains highly limited due to various factors influencing survival and progression-free rates, including tumor microenvironment, microsatellite instability, immune checkpoint expression, and gut microbiome. Additionally, its effectiveness is restricted to a small subgroup of patients, accompanied by side effects and the development of drug resistance mechanisms. To unlock its full potential, further clinical trials and research on molecular pathways in colorectal cancer are imperative. This will ultimately enhance drug discovery success and lead to more effective clinical management approaches.
Collapse
Affiliation(s)
- Chiugo Okoye
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - My Tran
- Internal Medicine, Baptist Health-University of Arkansas for Medical Sciences - Arkansas, North Little Rock, USA
| | | | | | | | - Blessing T Ojinna
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Chiamaka S Diala
- Health/Biomedical Informatics, The University of Texas Health Science Center, Houston, USA
- Internal Medicine, Piedmont Athens Regional, Athens, USA
| | | | | | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| |
Collapse
|
11
|
D'Errico S, Falanga AP, Greco F, Piccialli G, Oliviero G, Borbone N. State of art in the chemistry of nucleoside-based Pt(II) complexes. Bioorg Chem 2023; 131:106325. [PMID: 36577221 DOI: 10.1016/j.bioorg.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After the fortuitous discovery of the anticancer properties of cisplatin, many Pt(II) complexes have been synthesized, to obtain less toxic leads which could overcome the resistance phenomena. Given the importance of nucleosides and nucleotides as antimetabolites, studying their coordinating properties towards Pt(II) ions is challenging for bioorganic and medicinal chemistry. This review aims to describe the results achieved so far in the aforementioned field, paying particular attention to the synthetic aspects, the chemical-physical characterization, and the biological activities of the nucleoside-based Pt(II) complexes.
Collapse
Affiliation(s)
- Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
12
|
Saoudi Gonzalez N, López D, Gómez D, Ros J, Baraibar I, Salva F, Tabernero J, Élez E. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer. Expert Opin Drug Metab Toxicol 2022; 18:755-767. [PMID: 36582117 DOI: 10.1080/17425255.2022.2160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The introduction of monoclonal antibodies to the chemotherapy backbone treatment has challenged the paradigm of metastatic colorectal cancer (mCRC) treatment. Their mechanism of action and pharmacokinetics are complex but important to understand in order to improve patient selection and treatment outcomes for mCRC population. AREAS COVERED This review examines the scientific data, pharmacodynamics, and pharmacokinetics of approved monoclonal antibodies used to treat mCRC patients, including agents targeting signaling via VEGFR (bevacizumab and ramucirumab), EGFR (cetuximab and panitumumab), HER2/3 target therapy, and immunotherapy agents such as pembrolizumab or nivolumab. Efficacy and mechanism of action of bispecific antibodies are also covered. EXPERT OPINION mCRC is a heterogeneous disease and the optimal selection and sequence of treatments is challenging. Monoclonal antibodies have complex pharmacokinetics and pharmacodynamics, with important interactions between them. The arrival of bioequivalent molecules to the market increases the need for the characterization of pharmacokinetics and pharmacodynamics of classic monoclonal antibodies to reach bioequivalent novel molecules.
Collapse
Affiliation(s)
- Nadia Saoudi Gonzalez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Daniel López
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Diego Gómez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Francesc Salva
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| |
Collapse
|
13
|
Novoa Díaz MB, Martín MJ, Gentili C. Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol 2022; 28:3027-3046. [PMID: 36051330 PMCID: PMC9331520 DOI: 10.3748/wjg.v28.i26.3027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the main causes of death from cancer because patients progress unfavorably due to resistance to current therapies. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types of cancer, including CRC. In many subtypes of CRC, hyperactivation of the β-catenin pathway is associated with mutations of the adenomatous polyposis coli gene. However, it can also be associated with other causes. In recent years, studies of the tumor microenvironment (TME) have demonstrated its importance in the development and progression of CRC. In this tumor nest, several cell types, structures, and biomolecules interact with neoplastic cells to pave the way for the spread of the disease. Cross-communications between tumor cells and the TME are then established primarily through paracrine factors, which trigger the activation of numerous signaling pathways. Crucial advances in the field of oncology have been made in the last decade. This Minireview aims to actualize what is known about the central role of the Wnt/β-catenin pathway in CRC chemoresistance and aggressiveness, focusing on cross-communication between CRC cells and the TME. Through this analysis, our main objective was to increase the understanding of this complex disease considering a more global context. Since many treatments for advanced CRC fail due to mechanisms involving chemoresistance, the data here exposed and analyzed are of great interest for the development of novel and effective therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)-INQUISUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Argentina
| |
Collapse
|
14
|
Cho YB, Kim JW, Heo K, Kim HJ, Yun S, Lee HS, Shin HG, Shim H, Yu H, Kim YH, Lee S. An internalizing antibody targeting of cell surface GRP94 effectively suppresses tumor angiogenesis of colorectal cancer. Biomed Pharmacother 2022; 150:113051. [PMID: 35658213 DOI: 10.1016/j.biopha.2022.113051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the life-threatening malignancies worldwide. Thus, novel potential therapeutic targets and therapeutics for the treatment of CRC need to be identified to improve the clinical outcomes of patients with CRC. In this study, we found that glucose-regulated protein 94 (GRP94) is overexpressed in CRC tissues, and its high expression is correlated with increased microvessel density. Next, through phage display technology and consecutive in vitro functional isolations, we generated a novel human monoclonal antibody that specifically targets cell surface GRP94 and shows superior internalizing activity comparable to trastuzumab. We found that this antibody specifically inhibits endothelial cell tube formation and simultaneously promotes the downregulation of GRP94 expression on the endothelial cell surface. Finally, we demonstrated that this antibody effectively suppresses tumor growth and angiogenesis of HCT116 human CRC cells without causing severe toxicity in vivo. Collectively, these findings suggest that cell surface GRP94 is a novel potential anti-angiogenic target in CRC and that antibody targeting of GRP94 on the endothelial cell surface is an effective strategy to suppress CRC tumor angiogenesis.
Collapse
Affiliation(s)
- Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sumi Yun
- Samkwang Medical Laboratories, Department of Diagnostic Pathology, Seoul 06742, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanjin Yu
- HauulBio, Chuncheon, Gangwon 24398, Republic of Korea
| | - Yun-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea; Division of Convergence Technology, Research Institute of National Cancer Center, Goyang 10408, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
15
|
Ranasinghe R, Mathai M, Zulli A. A synopsis of modern - day colorectal cancer: Where we stand. Biochim Biophys Acta Rev Cancer 2022; 1877:188699. [DOI: 10.1016/j.bbcan.2022.188699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
16
|
Epidermal Growth Factor Receptor as Target for Perioperative Elimination of Circulating Colorectal Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:3577928. [PMID: 35035479 PMCID: PMC8759909 DOI: 10.1155/2022/3577928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.
Collapse
|
17
|
Barresi V. Colorectal Cancer: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021; 9:biomedicines9121858. [PMID: 34944674 PMCID: PMC8698346 DOI: 10.3390/biomedicines9121858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Valeria Barresi
- Dipartimento di Diagnostica e Sanità Pubblica, Sezione di Anatomia Patologica, Università di Verona, 37134 Verona, Italy
| |
Collapse
|
18
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
19
|
Mutations in the KRAS gene as a predictive biomarker of therapeutic response in patients with colorectal cancer. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Despite the important role of general KRAS mutational status in the selection of an adequate therapeutic protocol in patients with colorectal cancer (CRC), studies that focus on its specific mutations and their significance on progression of disease are scarce. This study aimed to determine the significance of specific KRAS mutations in response to standard chemotherapy protocols with oxaliplatin-based (FOLFOX 4, OXFL) in the first-line and irinotecan-based chemotherapy (FOLFIRI, IFL) in the second-line therapy, and to evaluate the correlation between these mutations and clinicopathological characteristics of CRC patients.
Methods: Genomic DNA was extracted from the FFPE tumour tissue sections while the KRAS mutation test was performed by using PCR methods.
Results: Prevalence of KRAS gene mutations in CRC patients was 45%. Mutated KRAS was more frequent in later stages of tumor infiltrations (P =0.0017), on the right side of the colon (P= 0.0044), and in patients who developed metastases in the first 6 months after CRC diagnosis than in patients who developed metastases after 24 months (P=0.0083). In a group of patients with a poor therapeutic response to standard chemotherapy the most frequent mutations in KRAS gene were G12D and G12V (63.88%), while in a group of patients with a good response to therapeutic protocols the most prevalent mutation was G12A (66.66%).
Conclusion: Our results indicate that there was a significant difference in biological behaviour between tumours harboring different mutations in KRAS gene. Overall, mutation G12A could be a novel prognostic biomarker for CRC patients treated with standard chemotherapy.
Collapse
|
20
|
Dhasmana A, Dhasmana S, Kotnala S, A A, Kashyap VK, Shaji PD, Laskar P, Khan S, Pellicano R, Fagoonee S, Haque S, Yallapu MM, Chauhan SC, Jaggi M. A topography of immunotherapies against gastrointestinal malignancies. Panminerva Med 2021; 64:56-71. [PMID: 34664484 DOI: 10.23736/s0031-0808.21.04541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastrointestinal (GI) cancers are one of the leading causes of death worldwide. Although various approaches are implemented to improve the health condition of GI patients, none of the treatment protocols promise for eradicating cancer. However, a treatment mechanism against any kind of disease condition is already existing executing inside the human body. The 'immune system' is highly efficient to detect and destroy the unfavourable events of the body including tumor cells. The immune system can restrict the growth and proliferation of cancer. Cancer cells behave much smarter and adopt new mechanisms for hiding from the immune cells. Thus, cancer immunotherapy might play a decisive role to train the immune system against cancer. In this review, we have discussed the immunotherapy permitted for the treatment of GI cancers. We have discussed various methods and mechanisms, periodic development of cancer immunotherapies, approved biologicals, completed and ongoing clinical trials, role of various biopharmaceuticals, and epigenetic factors involved in GI cancer immunotherapies (graphical abstract Figure 1).
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Anukriti A
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshamgarh, Rajasthan, India
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Poornima D Shaji
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA - meena.jaggi @utrgv.edu.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
21
|
Farghaly TA, Al-Hasani WA, Abdulwahab HG. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin Ther Pat 2021; 31:989-1007. [PMID: 34043477 DOI: 10.1080/13543776.2021.1935872] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Angiogenesis is a vital process for cellular functions in both physiological and pathophysiological conditions and is one of the hallmarks of cancer progression and metastasis. VEGF/VEGFR-2 signaling pathway has been recognized as the most critical factor in promoting angiogenesis. Hence, several VEGFR-2 inhibitors have been clinically tested and/or approved for the treatment of angiogenesis-related diseases.Areas covered: This review covered reports in the patent literature in the period 2017 to the end of 2020 on the small-molecule inhibitors and antibodies of VEGFR-2 and their potential use as therapeutics for several types of cancers, angiogenesis-related disorders, and Parkinson's and Alzheimer's diseases.Expert opinion: VEGF inhibition has attracted considerable attention as a potential approach for antiangiogenic therapy during the last two decades. However, the effectiveness of this approach may be limited by several issues such as weak response, resistance development, and serious adverse effects. Therefore, the combination of anti-angiogenic therapy with chemotherapy and/or immunotherapy, together with the proper utilization of nanomedicine-based approaches, may have a synergistic effect on improving the efficiency of therapy, reducing side effects and lowering the cost.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.,Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wedian A Al-Hasani
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|