1
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
2
|
Wu KM, Xu QH, Liu YQ, Feng YW, Han SD, Zhang YR, Chen SD, Guo Y, Wu BS, Ma LZ, Zhang Y, Chen YL, Yang L, Yang ZF, Xiao YJ, Wang TT, Zhao J, Chen SF, Cui M, Lu BX, Le WD, Shu YS, Ye K, Li JY, Li WS, Wang J, Liu C, Yuan P, Yu JT. Neuronal FAM171A2 mediates α-synuclein fibril uptake and drives Parkinson's disease. Science 2025; 387:892-900. [PMID: 39977508 DOI: 10.1126/science.adp3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/21/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025]
Abstract
Neuronal accumulation and spread of pathological α-synuclein (α-syn) fibrils are key events in Parkinson's disease (PD) pathophysiology. However, the neuronal mechanisms underlying the uptake of α-syn fibrils remain unclear. In this work, we identified FAM171A2 as a PD risk gene that affects α-syn aggregation. Overexpressing FAM171A2 promotes α-syn fibril endocytosis and exacerbates the spread and neurotoxicity of α-syn pathology. Neuronal-specific knockdown of FAM171A2 expression shows protective effects. Mechanistically, the FAM171A2 extracellular domain 1 interacts with the α-syn C terminus through electrostatic forces, with >1000 times more selective for fibrils. Furthermore, we identified bemcentinib as an effective blocker of FAM171A2-α-syn fibril interaction with an in vitro binding assay, in cellular models, and in mice. Our findings identified FAM171A2 as a potential receptor for the neuronal uptake of α-syn fibrils and, thus, as a therapeutic target against PD.
Collapse
Affiliation(s)
- Kai-Min Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian-Hui Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Qi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Wei Feng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Da Han
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Fei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu-Jie Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ting-Ting Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo-Xun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei-Dong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Neurology, Sichuan Provincial People's Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, China
| | - You-Sheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Institute of Health Sciences, China Medical University, Liaoning, Shenyang, China
| | - Wen-Sheng Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Small Molecule Modulation of Biological Processes, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai, China
| | - Peng Yuan
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
6
|
Kawahata I, Sekimori T, Oizumi H, Takeda A, Fukunaga K. Using Fatty Acid-Binding Proteins as Potential Biomarkers to Discriminate between Parkinson's Disease and Dementia with Lewy Bodies: Exploration of a Novel Technique. Int J Mol Sci 2023; 24:13267. [PMID: 37686075 PMCID: PMC10487513 DOI: 10.3390/ijms241713267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
An increase in the global aging population is leading to an increase in age-related conditions such as dementia and movement disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The accurate prediction of risk factors associated with these disorders is crucial for early diagnosis and prevention. Biomarkers play a significant role in diagnosing and monitoring diseases. In neurodegenerative disorders like α-synucleinopathies, specific biomarkers can indicate the presence and progression of disease. We previously demonstrated the pathogenic impact of fatty acid-binding proteins (FABPs) in α-synucleinopathies. Therefore, this study investigated FABPs as potential biomarkers for Lewy body diseases. Plasma FABP levels were measured in patients with AD, PD, DLB, and mild cognitive impairment (MCI) and healthy controls. Plasma FABP3 was increased in all groups, while the levels of FABP5 and FABP7 tended to decrease in the AD group. Additionally, FABP2 levels were elevated in PD. A correlation analysis showed that higher FABP3 levels were associated with decreased cognitive function. The plasma concentrations of Tau, GFAP, NF-L, and UCHL1 correlated with cognitive decline. A scoring method was applied to discriminate between diseases, demonstrating high accuracy in distinguishing MCI vs. CN, AD vs. DLB, PD vs. DLB, and AD vs. PD. The study suggests that FABPs could serve as potential biomarkers for Lewy body diseases and aid in early disease detection and differentiation.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan (K.F.)
| | - Tomoki Sekimori
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan (K.F.)
| | - Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai 982-0805, Japan (A.T.)
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai 982-0805, Japan (A.T.)
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan (K.F.)
| |
Collapse
|
7
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
8
|
Cheng A, Cai B, Fukunaga K, Sasaki T, Lakkaraju A. Feasibility and considerations of epsin2 as a candidate target for multiple system atrophy treatment. Expert Opin Ther Targets 2023; 27:1031-1034. [PMID: 37902421 DOI: 10.1080/14728222.2023.2277227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Affiliation(s)
- An Cheng
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Bo Cai
- Department of chemistry, Purdue university, West Lafayett, IN, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Jia W, Kawahata I, Cheng A, Sasaki T, Sasaoka T, Fukunaga K. Amelioration of Nicotine-Induced Conditioned Place Preference Behaviors in Mice by an FABP3 Inhibitor. Int J Mol Sci 2023; 24:ijms24076644. [PMID: 37047614 PMCID: PMC10095245 DOI: 10.3390/ijms24076644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
We previously demonstrated that fatty acid-binding protein 3 null (FABP3−/−) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.
Collapse
Affiliation(s)
- Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
10
|
Guo Q, Kawahata I, Jia W, Wang H, Cheng A, Yabuki Y, Shioda N, Fukunaga K. α-Synuclein decoy peptide protects mice against α-synuclein-induced memory loss. CNS Neurosci Ther 2023; 29:1547-1560. [PMID: 36786129 PMCID: PMC10173724 DOI: 10.1111/cns.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
AIMS We previously found that a decoy peptide derived from the C-terminal sequence of α-Synuclein (αSyn) prevents cytotoxic αSyn aggregation caused by fatty acid-binding protein 3 (FABP3) in vitro. In this study, we continued to utilize αSyn-derived peptides to further validate their effects on αSyn neurotoxicity and behavioral impairments in αSyn preformed fibrils (PFFs)-injected mouse model of Parkinson's disease (PD). METHODS Mice were injected with αSyn PFFs in the bilateral olfactory bulb (OB) and then were subjected to behavioral analysis at 2-week intervals post-injection. Peptides nasal administration was initiated one week after injection. Changes in phosphorylation of αSyn and neuronal damage in the OB were measured using immunostaining at week 4. The effect of peptides on the interaction between αSyn and FABP3 was examined using co-immunoprecipitation. RESULTS αSyn PFF-injected mice showed significant memory loss but no motor function impairment. Long-term nasal treatment with peptides effectively prevented memory impairment. In peptide-treated αSyn PFF-injected mice, the peptides entered the OB smoothly through the nasal cavity and were mainly concentrated in neurons in the mitral cell layer, significantly suppressing the excessive phosphorylation of αSyn and reducing the formation of αSyn-FABP3 oligomers, thereby preventing neuronal death. The addition of peptides also blocked the interaction of αSyn and FABP3 at the recombinant protein level, and its effect was strongest at molar concentrations comparable to those of αSyn and FABP3. CONCLUSIONS Our findings suggest that the αSyn decoy peptide represents a novel therapeutic approach for reducing the accumulation of toxic αSyn-FABP3 oligomers in the brain, thereby preventing the progression of synucleinopathies.
Collapse
Affiliation(s)
- Qingyun Guo
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wenbin Jia
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haoyang Wang
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - An Cheng
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,BRI Pharma Incorporated, Sendai, Japan
| |
Collapse
|
11
|
Bayati A, Banks E, Han C, Luo W, Reintsch WE, Zorca CE, Shlaifer I, Del Cid Pellitero E, Vanderperre B, McBride HM, Fon EA, Durcan TM, McPherson PS. Rapid macropinocytic transfer of α-synuclein to lysosomes. Cell Rep 2022; 40:111102. [PMID: 35858558 DOI: 10.1016/j.celrep.2022.111102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
The nervous system spread of alpha-synuclein fibrils is thought to cause Parkinson's disease (PD) and other synucleinopathies; however, the mechanisms underlying internalization and cellular spread are enigmatic. Here, we use confocal and superresolution microscopy, subcellular fractionation, and electron microscopy (EM) of immunogold-labeled α-synuclein preformed fibrils (PFFs) to demonstrate that this form of the protein undergoes rapid internalization and is targeted directly to lysosomes in as little as 2 min. Uptake of PFFs is disrupted by macropinocytic inhibitors and circumvents classical endosomal pathways. Immunogold-labeled PFFs are seen at the highly curved inward edge of membrane ruffles, in newly formed macropinosomes, in multivesicular bodies and in lysosomes. While most fibrils remain in lysosomes, a portion is transferred to neighboring naive cells along with markers of exosomes. These data indicate that PFFs use a unique internalization mechanism as a component of cell-to-cell propagation.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Wen Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Wolfgang E Reintsch
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Irina Shlaifer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Esther Del Cid Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Benoit Vanderperre
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
12
|
Kawahata I, Finkelstein DI, Fukunaga K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. Int J Mol Sci 2022; 23:ijms23116216. [PMID: 35682892 PMCID: PMC9181156 DOI: 10.3390/ijms23116216] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. Consequently, this review focuses on the pathogenic impact of α-synuclein phosphorylation and its kinases during the neurodegeneration process in α-synucleinopathy.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Inc., Sendai 982-0804, Japan
- Correspondence: (I.K.); (K.F.); Tel.: +81-22-795-6838 (I.K.); +81-22-795-6836 (K.F.); Fax: +81-22-795-6835 (I.K. & K.F.)
| |
Collapse
|
13
|
Saito N, Itakura M, Sasaoka T. D1 Receptor Mediated Dopaminergic Neurotransmission Facilitates Remote Memory of Contextual Fear Conditioning. Front Behav Neurosci 2022; 16:751053. [PMID: 35309682 PMCID: PMC8925912 DOI: 10.3389/fnbeh.2022.751053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurotransmission via dopamine D1 receptors (D1Rs) is considered to play an important role not only in reward-based learning but also in aversive learning. The contextual and auditory cued fear conditioning tests involve the processing of classical fear conditioning and evaluates aversive learning memory. It is possible to evaluate aversive learning memory in two different types of neural transmission circuits. In addition, when evaluating the role of dopaminergic neurotransmission via D1R, to avoid the effects in D1R-mediated neural circuitry alterations during development, it is important to examine using mice who D1R expression in the mature stage is suppressed. Herein, we investigated the role of dopaminergic neurotransmission via D1Rs in aversive memory formation in contextual and auditory cued fear conditioning tests using D1R knockdown (KD) mice, in which the expression of D1Rs could be conditionally and reversibly controlled with doxycycline (Dox) treatment. For aversive memory, we examined memory formation using recent memory 1 day after conditioning, and remote memory 4 weeks after conditioning. Furthermore, immunostaining of the brain tissues of D1RKD mice was performed after aversive footshock stimulation to investigate the distribution of activated c-Fos, an immediate-early gene, in the hippocampus (CA1, CA3, dentate gyrus), striatum, amygdala, and prefrontal cortex during aversive memory formation. After aversive footshock stimulation, immunoblotting was performed using hippocampal, striatal, and amygdalar samples from D1RKD mice to investigate the increase in the amount of c-Fos and phosphorylated SNAP-25 at Ser187 residue. When D1R expression was suppressed using Dox, behavioral experiments revealed impaired contextual fear learning in remote aversion memory following footshock stimulation. Furthermore, expression analysis showed a slight increase in the post-stimulation amount of c-Fos in the hippocampus and striatum, and a significant increase in the amount of phosphorylated SNAP-25 in the hippocampus, striatum, and prefrontal cortex before and after stimulation. These findings indicate that deficiency in D1R-mediated dopaminergic neurotransmission is an important factor in impairing contextual fear memory formation for remote memory.
Collapse
Affiliation(s)
- Nae Saito
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
- *Correspondence: Toshikuni Sasaoka,
| |
Collapse
|
14
|
Yoshida S, Hasegawa T. Deciphering the prion-like behavior of pathogenic protein aggregates in neurodegenerative diseases. Neurochem Int 2022; 155:105307. [PMID: 35181393 DOI: 10.1016/j.neuint.2022.105307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are hitherto classified based on their core clinical features, the anatomical distribution of neurodegeneration, and the cell populations mainly affected. On the other hand, the wealth of neuropathological, genetic, molecular and biochemical studies have identified the existence of distinct insoluble protein aggregates in the affected brain regions. These findings have spread the use of a collective term, proteinopathy, for neurodegenerative disorders with particular type of structurally altered protein accumulation. Particularly, a recent breakthrough in this field came with the discovery that these protein aggregates can transfer from one cell to another, thereby converting normal proteins to potentially toxic, misfolded species in a prion-like manner. In this review, we focus specifically on the molecular and cellular basis that underlies the seeding activity and transcellular spreading phenomenon of neurodegeneration-related protein aggregates, and discuss how these events contribute to the disease progression.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan; Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Yamagata, 992-1202, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 9808574, Japan.
| |
Collapse
|
15
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
16
|
Dopamine D2L Receptor Deficiency Alters Neuronal Excitability and Spine Formation in Mouse Striatum. Biomedicines 2022; 10:biomedicines10010101. [PMID: 35052781 PMCID: PMC8773425 DOI: 10.3390/biomedicines10010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson’s disease or drug-induced dyskinesias.
Collapse
|
17
|
Kawahata I, Fukunaga K. [Development of therapeutic peptides for Lewy body diseases preventing α-synuclein propagation]. Nihon Yakurigaku Zasshi 2022; 157:401-404. [PMID: 36328546 DOI: 10.1254/fpj.22055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the advent of a super-aging society, overcoming age-related neurological diseases and developing fundamental therapeutic agents are urgent issues. In Lewy body diseases such as Parkinson's disease and dementia with Lewy bodies, the accumulation and aggregation of α-synuclein in the neuronal cells, called Lewy bodies, are known as pathological features. Intracellular accumulation of the causative protein α-synuclein in the central nervous system requires an uptake process into neurons. Type 3 fatty acid-binding protein (FABP3) is highly expressed in dopaminergic neurons and has the ability to bind dopamine receptors, particularly dopamine D2 long type (D2L) receptors, which are abundantly localized on caveolae structures in the plasma membrane. We found that dopaminergic neurons do not take up α-synuclein in FABP3 knockout or D2L receptor-selective knockout mice. Next, we found that the C-terminal deletion of α-synuclein reduces the uptake ability. α-Synuclein has a FABP3 binding site in its C-terminal region. On this point, exposure to the C-terminal peptide reduced α-synuclein uptake into dopaminergic neurons. Based on these findings, this article describes the unique mechanism of the propagation and uptake process of α-synuclein, focusing on the physiological significance of FABP3 and dopamine D2 receptors. Additionally, we will review the development status of therapeutic peptide candidates for Lewy body diseases, and then discuss the novel pathogenic mechanism of Lewy body disease as well as the potential of fundamental therapeutics targeting the uptake process of α-synuclein.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
18
|
Ekker M. Dopamine in Health and Disease. Biomedicines 2021; 9:biomedicines9111644. [PMID: 34829873 PMCID: PMC8615827 DOI: 10.3390/biomedicines9111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter dopamine (DA) is generally associated with Parkinson's disease (PD) [...].
Collapse
Affiliation(s)
- Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
19
|
Fatty Acid Binding Protein 3 (FABP3) and Apolipoprotein E4 (ApoE4) as Lipid Metabolism-Related Biomarkers of Alzheimer's Disease. J Clin Med 2021; 10:jcm10143009. [PMID: 34300173 PMCID: PMC8303862 DOI: 10.3390/jcm10143009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Lipid metabolism-related biomarkers gain increasing researchers interest in the field of neurodegenerative disorders. Mounting evidence have indicated the role of fatty acid-binding proteins and pathology lipid metabolism in Alzheimer’s Disease (AD). The imbalance of fatty acids (FA) and lipids may negatively affect brain functions related to neurodegenerative disorders. The ApoE4 and FABP3 proteins may reflect processes leading to neurodegeneration. This study aimed to evaluate the relationship between the CSF levels of FABP3 and ApoE4 proteins and cognitive decline as well as the diagnostic performance of these candidate biomarkers in AD and mild cognitive impairment (MCI). Methods: A total of 70 subjects, including patients with AD, MCI, and non-demented controls, were enrolled in the study. CSF concentrations of FABP3 and ApoE4 were measured using immunoassay technology. Results: Significantly higher CSF concentrations of FABP3 and ApoE4 were observed in AD patients compared to MCI subjects and individuals without cognitive impairment. Both proteins were inversely associated with Aβ42/40 ratio: ApoE4 (rho = −0.472, p < 0.001), and FABP3 (rho = −0.488, p < 0.001) in the whole study group, respectively. Additionally, FABP3 was negatively correlated with Mini-Mental State Examination score in the whole study cohort (rho = −0.585 p < 0.001). Conclusion: Presented results indicate the pivotal role of FABP3 and ApoE4 in AD pathology as lipid-related biomarkers, but studies on larger cohorts are needed.
Collapse
|
20
|
Kawahata I. [The novel mechanism of α-synuclein propagation in synucleinopathy]. Nihon Yakurigaku Zasshi 2021; 156:251. [PMID: 34193707 DOI: 10.1254/fpj.21033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Cheng A, Jia W, Kawahata I, Fukunaga K. Impact of Fatty Acid-Binding Proteins in α-Synuclein-Induced Mitochondrial Injury in Synucleinopathy. Biomedicines 2021; 9:biomedicines9050560. [PMID: 34067791 PMCID: PMC8156290 DOI: 10.3390/biomedicines9050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Synucleinopathies are diverse diseases with motor and cognitive dysfunction due to progressive neuronal loss or demyelination, due to oligodendrocyte loss in the brain. While the etiology of neurodegenerative disorders (NDDs) is likely multifactorial, mitochondrial injury is one of the most vital factors in neuronal loss and oligodendrocyte dysfunction, especially in Parkinson’s disease, dementia with Lewy body, multiple system atrophy, and Krabbe disease. In recent years, the abnormal accumulation of highly neurotoxic α-synuclein in the mitochondrial membrane, which leads to mitochondrial dysfunction, was well studied. Furthermore, fatty acid-binding proteins (FABPs), which are members of a superfamily and are essential in fatty acid trafficking, were reported to trigger α-synuclein oligomerization in neurons and glial cells and to target the mitochondrial outer membrane, thereby causing mitochondrial loss. Here, we provide an updated overview of recent findings on FABP and α-synuclein interactions and mitochondrial injury in NDDs.
Collapse
Affiliation(s)
- An Cheng
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Wenbin Jia
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Ichiro Kawahata
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-(22)-795-6837
| |
Collapse
|
22
|
Fukui N, Yamamoto H, Miyabe M, Aoyama Y, Hongo K, Mizobata T, Kawahata I, Yabuki Y, Shinoda Y, Fukunaga K, Kawata Y. An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. J Biol Chem 2021; 296:100663. [PMID: 33862084 PMCID: PMC8131325 DOI: 10.1016/j.jbc.2021.100663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
α-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson’s disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons. To characterize the molecular mechanisms that underlie the interactions between FABP3 and αSyn that modulate the cellular accumulation of the latter, in this report, we used in vitro fluorescence assays combined with fluorescence microscopy, transmission electron microscopy, and quartz crystal microbalance assays to characterize in detail the process and consequences of FABP3–αSyn interaction. We demonstrated that binding of FABP3 to αSyn results in changes in the aggregation mechanism of the latter; specifically, a suppression of fibrillar forms of αSyn and also the production of aggregates with an enhanced cytotoxicity toward mice neuro2A cells. Because this interaction involved the C-terminal sequence region of αSyn, we tested a peptide derived from this region of αSyn (αSynP130-140) as a decoy to prevent the FABP3–αSyn interaction. We observed that the peptide competitively inhibited binding of αSyn to FABP3 in vitro and in cultured cells. We propose that administration of αSynP130-140 might be used to prevent the accumulation of toxic FABP3-αSyn oligomers in cells, thereby preventing the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Naoya Fukui
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Hanae Yamamoto
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Moe Miyabe
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuki Aoyama
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| |
Collapse
|
23
|
Characterization of design grammar of peptides for regulating liquid droplets and aggregates of FUS. Sci Rep 2021; 11:6643. [PMID: 33758287 PMCID: PMC7988016 DOI: 10.1038/s41598-021-86098-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid droplets of aggregation-prone proteins, which become hydrogels or form amyloid fibrils, are a potential target for drug discovery. In this study, we proposed an experiment-guided protocol for characterizing the design grammar of peptides that can regulate droplet formation and aggregation. The protocol essentially involves investigation of 19 amino acid additives and polymerization of the identified amino acids. As a proof of concept, we applied this protocol to fused in sarcoma (FUS). First, we evaluated 19 amino acid additives for an FUS solution and identified Arg and Tyr as suppressors of droplet formation. Molecular dynamics simulations suggested that the Arg additive interacts with specific residues of FUS, thereby inhibiting the cation-π and electrostatic interactions between the FUS molecules. Second, we observed that Arg polymers promote FUS droplet formation, unlike Arg monomers, by bridging the FUS molecules. Third, we found that the Arg additive suppressed solid aggregate formation of FUS, while Arg polymer enhanced it. Finally, we observed that amyloid-forming peptides induced the conversion of FUS droplets to solid aggregates of FUS. The developed protocol could be used for the primary design of peptides controlling liquid droplets and aggregates of proteins.
Collapse
|