1
|
Heimes D, Wiesmann-Imilowski N, Heidebrecht T, Blatt S, Pabst A, Becker P, Fuest S, Brieger J, Smeets R, Kämmerer PW. Biofunctionalization of silk fibroin scaffolds with enamel matrix protein and injectable platelet rich fibrin for soft tissue augmentation: an in-ovo study. Int J Implant Dent 2025; 11:13. [PMID: 39976848 PMCID: PMC11842663 DOI: 10.1186/s40729-025-00601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
PURPOSE Silk fibroin (SF) is a biomaterial derived from the cocoon of the mulberry silkworm. This study aimed to assess the capacity of SF matrices biologized with injectable platelet-rich fibrin (iPRF) or enamel matrix protein (EMP) to modulate angiogenesis and immune response in the chorioallantoic membrane (CAM) assay. METHODS 300 eggs were divided into the following groups: CM + NaCl, CM + iPRF, CM + EMP, SF + NaCl, SF + iPRF, and SF + EMP. Matrices were applied to the CAM on embryonic development day (EDD) 7 after rehydration. Angiogenesis, represented by vascularized area, vessel density, and vessel junctions, was evaluated on EDD 10, 12, and 14. Additionally, gene expression of HIF-1ɑ, VEGF, MMP-13, and NOS2 was assessed via quantitative polymerase chain reaction (qPCR) on EDD 11 and 14. RESULTS The number of vascularized specimens was notably higher in SF matrices regardless of the treatment applied, while in the CM group, only matrices biofunctionalized with iPRF demonstrated vascularization. On EDD 14, the CM + iPRF group exhibited the highest values for total vascularized area (CM + iPRF: 57.52%, SF + iPRF: 21.87%, p < 0.001), vessel density (CM + iPRF: 0.0067 μm/µm2, SF + iPRF: 0.0032 μm/µm2, p = 0.002), number of vessel junctions (CM + iPRF: 14.45, SF + iPRF: 4.82, p = 0.001). Gene expressions displayed high data variability and no significant differences between the groups. CONCLUSIONS Biofunctionalization with iPRF in CM leads to a high vascularization rate probably through their capability of retaining higher liquid volumes, suggesting improved intraoral wound healing after guided tissue regeneration (GTR). Despite biofunctionalization, SF matrices exhibit a high vascularization, indicating SF as a promising material for GTR.
Collapse
Affiliation(s)
- Diana Heimes
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - Nadine Wiesmann-Imilowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Timpe Heidebrecht
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jürgen Brieger
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
2
|
Sedek EM, Khalil NM, Abdul-Monem MM. Histomorphometric and immunohistochemical assessment of treated dentin matrix delivered by platelet-rich fibrin for socket preservation in rabbit model. BMC Oral Health 2025; 25:225. [PMID: 39939950 PMCID: PMC11823050 DOI: 10.1186/s12903-025-05569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVES This study aimed to test treated dentine matrix (TDM) with platelet-rich fibrin (PRF) for socket preservation, following tooth extraction compared to synthetic grafting material Nanobone (NB) with PRF. MATERIALS AND METHODS Study was conducted on New Zealand rabbits (n = 40). Bilateral first lower premolar extraction was performed, with one side left empty and the other side filled with (PRF) in one group (n = 20). In the other group (n = 20), one side was filled with TDM/PRF while the other side was filled with NB/ PRF. After one and three months, rabbits were euthanized, and the socket area was examined using haematoxylin and eosin (H&E) and Goldner Masson trichrome stains. One-way ANOVA and post-hoc tests were used for histomorphometric analysis. Immunohistochemical analysis of osteopontin was carried out. RESULTS Histological analysis of NB/PRF and TDM/PRF groups showed a higher level of new bone formation in comparison to the control and PRF groups. Histomorphometric analysis revealed a significant increase in new bone formation in the TDM/PRF group compared to the NB/PRF group after one and three months (p = 0.042 and p < 0.001), respectively. There were no significant differences in the percentages of unmineralized bone between the TDM/PRF and NB/PRF groups at both intervals (p = 0.375 and 0.352, respectively). Regarding immunohistochemistry, NB/PRF showed the highest osteopontin immune expression followed by TDM/PRF. No significant differences were detected between both groups at both intervals (p = 0.234 & 0.607 respectively). CONCLUSIONS TDM/PRF showed the ability to form new bone in extraction sockets in rabbits. CLINICAL RELEVANCE TDM/PRF can be used as an alveolar bone grafting material for socket preservation.
Collapse
Affiliation(s)
- Eman M Sedek
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, 21525, Egypt.
| | - Mohamed M Abdul-Monem
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
4
|
Jia K, You J, Zhu Y, Li M, Chen S, Ren S, Chen S, Zhang J, Wang H, Zhou Y. Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization. Front Bioeng Biotechnol 2024; 12:1286035. [PMID: 38689760 PMCID: PMC11058865 DOI: 10.3389/fbioe.2024.1286035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Platelet-rich fibrin, a classical autologous-derived bioactive material, consists of a fibrin scaffold and its internal loading of growth factors, platelets, and leukocytes, with the gradual degradation of the fibrin scaffold and the slow release of physiological doses of growth factors. PRF promotes vascular regeneration, promotes the proliferation and migration of osteoblast-related cells such as mesenchymal cells, osteoblasts, and osteoclasts while having certain immunomodulatory and anti-bacterial effects. PRF has excellent osteogenic potential and has been widely used in the field of bone tissue engineering and dentistry. However, there are still some limitations of PRF, and the improvement of its biological properties is one of the most important issues to be solved. Therefore, it is often combined with bone tissue engineering scaffolds to enhance its mechanical properties and delay its degradation. In this paper, we present a systematic review of the development of platelet-rich derivatives, the structure and biological properties of PRF, osteogenic mechanisms, applications, and optimization to broaden their clinical applications and provide guidance for their clinical translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Grandjean T, Perumal N, Manicam C, Matthey B, Wu T, Thiem DGE, Stein S, Henrich D, Kämmerer PW, Al-Nawas B, Ritz U, Blatt S. Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Front Bioeng Biotechnol 2024; 12:1363380. [PMID: 38595995 PMCID: PMC11002213 DOI: 10.3389/fbioe.2024.1363380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Autologous platelet concentrate (APC) are pro-angiogenic and can promote wound healing and tissue repair, also in combination with other biomaterials. However, challenging defect situations remain demanding. 3D bioprinting of an APC based bioink encapsulated in a hydrogel could overcome this limitation with enhanced physio-mechanical interface, growth factor retention/secretion and defect-personalized shape to ultimately enhance regeneration. Methods This study used extrusion-based bioprinting to create a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Chemico-physical testing exhibited an amorphous structure characterized by high shape fidelity. Cytotoxicity assay and incubation of human osteogenic sarcoma cells (SaOs2) exposed excellent biocompatibility. enzyme-linked immunosorbent assay analysis confirmed pro-angiogenic growth factor release of the printed constructs, and co-incubation with HUVECS displayed proper cell viability and proliferation. Chorioallantoic membrane (CAM) assay explored the pro-angiogenic potential of the prints in vivo. Detailed proteome and secretome analysis revealed a substantial amount and homologous presence of pro-angiogenic proteins in the 3D construct. Results This study demonstrated a 3D bioprinting approach to fabricate a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate with high shape fidelity, biocompatibility, and substantial pro-angiogenic properties. Conclusion This approach may be suitable for challenging physiological and anatomical defect situations when translated into clinical use.
Collapse
Affiliation(s)
- Till Grandjean
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Björn Matthey
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Tao Wu
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Schröger SV, Blatt S, Sagheb K, Al-Nawas B, Kämmerer PW, Sagheb K. Platelet-rich fibrin for rehydration and pre-vascularization of an acellular, collagen membrane of porcine origin. Clin Oral Investig 2024; 28:99. [PMID: 38227215 PMCID: PMC10791820 DOI: 10.1007/s00784-023-05485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES Pre-vascularization of the collagen membranes with autologous platelet concentrates is a standard procedure in oral and maxillofacial surgery. This study analyzed the possible interaction of an acellular collagen membrane of porcine origin (NM) with platelet-rich fibrin (PRF) regarding its rehydration protocol with differences in pH values and effect on angiogenesis. MATERIALS AND METHODS NM was analyzed alone and combined with solid PRF by plotting or co-culturing with injectable PRF. Different media (venous blood, buffer solution with a fixed pH value of 7, saline solution, and injectable PRF) were used to analyze the influence on pH value during rehydration. Chorion allantois membrane assay (CAM) was applied to check pro-angiogenic effects after 24, 48, and 72 h, followed by immunohistochemical analysis. RESULTS Rehydration in injectable PRF showed acidity over time (p < 0.05). A definite pro-angiogenic effect of NM alone was found regarding neo-vessel formation supported by the respective light microscopically analysis without significant differences to PRF alone (p > 0.005). This pro-angiogenic effect could not be exaggerated when NM was combined with liquid/solid PRF (each p > 0.005). CONCLUSIONS Rehydration with liquid PRF of the collagen membrane results in acidity compared to a saline solution or patient's blood. The significant pro-angiogenic potential of the membrane alone resulted in enhanced neo-vessel formation that could not be optimized with the addition of PRF. CLINICAL RELEVANCE STATEMENT Using injectable PRF for rehydration protocol of the collagen membrane leads to acidosis that can ultimately optimize wound healing. Differences in the physio-mechanical interplay of collagen matrices and autologous platelet concentrates must result in clinical algorithms if pre-vascularization can maximize outcomes.
Collapse
Affiliation(s)
- Saskia-Vanessa Schröger
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Kawe Sagheb
- Department of Prosthodontics University Medical Center Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Keyvan Sagheb
- Department of Oral and Maxillofacial Surgery-Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
7
|
Saboia-Dantas CJ, Dechichi P, Fech RL, de Carvalho Furst RV, Raimundo RD, Correa JA. Progressive Platelet Rich Fibrin tissue regeneration matrix: Description of a novel, low cost and effective method for the treatment of chronic diabetic ulcers-Pilot study. PLoS One 2023; 18:e0284701. [PMID: 37141233 PMCID: PMC10159142 DOI: 10.1371/journal.pone.0284701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Chronic lower limb ulcers (CLLU) are those injuries that persist for more than six weeks despite adequate care. They are relatively common; it is estimated that 10/1,000 people will develop CLLU in their lifetime. Diabetic ulcer, because of its unique pathophysiology (association between neuropathy, microangiopathy, and immune deficiency), is considered one of the most complex and difficult etiologies of CLLU for treatment. This treatment is complex, costly, and sometimes frustrating, as it is often ineffective, which worsens the quality of life of patients and makes its treatment a challenge. OBJECTIVE To describe a new method for treating diabetic CLLU and the initial results of using a new autologous tissue regeneration matrix. METHOD This is a pilot, prospective, an interventional study that used a novel protocol of autologous tissue regeneration matrix for the treatment of diabetic CLLU. RESULTS Three male cases with a mean age of 54 years were included. A total of six Giant Pro PRF Membrane (GMPro) were used varying their application between one to three sessions during treatment. A total of 11 liquid phase infiltrations were performed varying their application between three and four sessions. The patients were evaluated weekly and a reduction in the wound area and scar retraction was observed during the period studied. CONCLUSION The new tissue regeneration matrix described is an effective and low-cost method for the treatment of chronic diabetic ulcers.
Collapse
Affiliation(s)
- Carlos José Saboia-Dantas
- Laboratorio de Pesquisa em Reparo Tecidual, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | - Paula Dechichi
- Laboratorio de Pesquisa em Reparo Tecidual, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil
| | | | | | - Rodrigo Daminello Raimundo
- Laboratório de Delineamento de Pesquisas e Escrita Científica, Centro Universitário FMABC, Santo André, São Paulo, Brasil
| | - João Antonio Correa
- Departamento de Cirurgia, Centro Universitário FMABC, Santo André, São Paulo, Brasil
| |
Collapse
|
8
|
Saboia-Dantas CJ, Limirio PHJO, Costa MDMDA, Linhares CRB, Santana Silva MAF, Borges de Oliveira HAA, Dechichi P. Platelet-Rich Fibrin Progressive Protocol: Third Generation of Blood Concentrates. J Oral Maxillofac Surg 2023; 81:80-87. [PMID: 36209891 DOI: 10.1016/j.joms.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Platelet-rich fibrin (PRF) has been used in several fields of dentistry to improve tissue healing. However, PRF from glass tubes results in a limited number of small membranes, increasing clinical difficulty and work time. The aim of this study was to evaluate cell and platelet amounts and biomechanical strength of PRF-giant membranes produced from plastic tubes without additives. MATERIAL AND METHODS The investigators designed an ex vivo study, to compare 3 different centrifugation protocols for obtaining PRF: 700 × g/12 minutes (leukocyte and PRF [L-PRF]), 350 × g/14 minutes (GM350), and 60-700 × g more than 15 minutes total (progressive PRF [PRO-PRF]). We collected blood samples from 5 volunteers aged 25-54 years, over 3 different time periods (triplicate and paired study). From each venipuncture, 4 mL of blood was collected in vacutainers with ethylenediamine tetraacetic acid (EDTA) and approximately 104 mL in 12 plastic tubes without additives, which were separated into 3 groups, as per the centrifugation protocols (n = 5): L-PRF, GM350, and PRO-PRF. The PRF from the tubes of the same protocol was aspirated and 9 mL were placed in polylactic acid (PLA) forms and 3 mL were placed in a glass receptacle. The membranes from PLA forms were tested for tensile strength and the membranes from glass receptacles were evaluated by histomorphometry, while platelets and leukocytes were counted for those in tubes with EDTA. Statistical analyses were performed using Shapiro-Wilk normality test and then a one-way repeated measures analysis followed by Tukey multiple comparisons test (α < 0.05). RESULTS In tensile analyses, PRO-PRF (0.85 ± 0.23 N) showed a significantly higher maximum breaking strength than L-PRF (0.61 ± 0.26 N, P = .01) and GM350 (0.58 ± 0.23 N, P < .01). The histomorphometry revealed no significant statistical difference in cell counts between the groups (P = .52). Furthermore, there was no significant difference between the leukocyte (P = .25) and platelet counts (P = .59) in whole blood between the groups. CONCLUSION The progressive protocol (PRO-PRF) enabled the production of PRF giant membranes with greater tensile strength and adequate cell distribution. Moreover, it allows biomaterial incorporation during production and enables clinical control of membrane thickness and size as per the surgical procedure.
Collapse
Affiliation(s)
- Carlos José Saboia-Dantas
- Tissue Repair Research Laboratory, Brain Storm Academy, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | - Camila Rodrigues Borges Linhares
- Department of Cell Biology, Histology and Embryology, Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maria Adelia Faleiro Santana Silva
- Department of Cell Biology, Histology and Embryology, Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Paula Dechichi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Department of Cell Biology, Histology and Embryology, Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Njokanma AR, Fatusi OA, Ogundipe OK, Arije OO, Akomolafe AG, Kuye OF. Does platelet-rich fibrin increase bone regeneration in mandibular third molar extraction sockets? J Korean Assoc Oral Maxillofac Surg 2022; 48:371-381. [PMID: 36579909 PMCID: PMC9807374 DOI: 10.5125/jkaoms.2022.48.6.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives This study determined the effect of platelet-rich fibrin (PRF) on extraction socket bone regeneration and assessed the patterns and determinants of bone regeneration after the surgical extraction of impacted mandibular third molars. Materials and Methods This prospective study randomly allocated 90 patients into two treatment groups: A PRF group (intervention group) and a non-PRF group (control group). After surgical extractions, the PRF group had PRF placed in the extraction socket and the socket was sutured, while the socket was only sutured in the non-PRF group. At postoperative weeks 1, 4, 8, and 12, periapical radiographs were obtained and HLImage software was used to determine the region of newly formed bone (RNFB) and the pattern of bone formation. The determinants of bone regeneration were assessed. Statistical significance was set at P<0.05. Results The percentage RNFB (RNFB%) was not significantly higher in the PRF group when compared with the non-PRF group at postoperative weeks 1, 4, 8, and 12 (P=0.188, 0.155, 0.132, and 0.219, respectively). Within the non-PRF group, the middle third consistently exhibited the highest bone formation while the least amount of bone formation was consistently observed in the cervical third. In the PRF group, the middle third had the highest bone formation, while bone formation at the apical third was smaller compared to the cervical third at the 8th week with this difference widening at the 12th week. The sex of the patient, type of impaction, and duration of surgery was significantly associated with percentage bone formation (P=0.041, 0.043, and 0.018, respectively). Conclusion Placement of PRF in extraction sockets increased socket bone regeneration. However, this finding was not statistically significant. The patient's sex, type of impaction, and duration of surgery significantly influenced the percentage of bone formation.
Collapse
Affiliation(s)
- Azuka Raphael Njokanma
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria,Azuka Raphael Njokanma, Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ilesa Road, PMB 5538 Ile-Ife, Nigeria, TEL: +234-8062882989, E-mail: , ORCID: https://orcid.org/0000-0001-7093-8748
| | - Olawunmi Adedoyin Fatusi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olufemi Kolawole Ogundipe
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Ayodele Gbenga Akomolafe
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Olasunkanmi Funmilola Kuye
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| |
Collapse
|
10
|
Ngeow WC, Tan CC, Goh YC, Deliberador TM, Cheah CW. A Narrative Review on Means to Promote Oxygenation and Angiogenesis in Oral Wound Healing. Bioengineering (Basel) 2022; 9:636. [PMID: 36354548 PMCID: PMC9688034 DOI: 10.3390/bioengineering9110636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 08/22/2023] Open
Abstract
Oral mucosa serves as the primary barrier against pathogen invasions, mechanical stresses, and physical trauma. Although it is generally composed of keratinocytes and held in place by desmosomes, it shows variation in tissue elasticity and surface keratinization at different sites of the oral cavity. Wound healing undergoes four stages of tissue change sequences, namely haemostasis, inflammation, proliferation, and remodelling. The wound healing of oral hard tissue and soft tissue is largely dependent on the inflammatory response and vascular response, which are the targets of many research. Because of a less-robust inflammatory response, favourable saliva properties, a unique oral environment, and the presence of mesenchymal stem cells, oral wounds are reported to demonstrate rapid healing, less scar formation, and fewer inflammatory reactions. However, delayed oral wound healing is a major concern in certain populations with autoimmune disorders or underlying medical issues, or those subjected to surgically inflicted injuries. Various means of approach have been adopted to improve wound tissue proliferation without causing excessive scarring. This narrative review reappraises the current literature on the use of light, sound, mechanical, biological, and chemical means to enhance oxygen delivery to wounds. The current literature includes the use of hyperbaric oxygen and topical oxygen therapy, ultrasounds, lasers, platelet-rich plasma (PRP)/platelet-rich fibrin (PRF), and various chemical agents such as hyaluronic acid, astaxanthin, and Centella asiatica to promote angiogenesis in oral wound healing during the proliferation process. The arrival of a proprietary oral gel that is reported to improve oxygenation is highlighted.
Collapse
Affiliation(s)
- Wei Cheong Ngeow
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chuey Chuan Tan
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yet Ching Goh
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Chia Wei Cheah
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Novel artemisinin derivative FO8643 with anti-angiogenic activity inhibits growth and migration of cancer cells via VEGFR2 signaling. Eur J Pharmacol 2022; 930:175158. [PMID: 35878807 DOI: 10.1016/j.ejphar.2022.175158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) is widely recognized as a key effector in angiogenesis and cancer progression and has been considered a critical target for the development of anti-cancer drugs. Artemisinin (ARS) and its derivatives exert profound efficacy in treating not only malaria but also cancer. As a novel ARS-type compound, FO8643 caused significant suppression of the growth of a panel of cancer cells, including both solid and hematologic malignancies. In CCRF-CEM leukemia cells, FO8643 dramatically inhibited cell proliferation coupled with increased apoptosis and cell cycle arrest. Additionally, FO8643 restrained cell migration in the 2D wound healing assay as well as in a 3D spheroid model of human hepatocellular carcinoma HUH-7 cells. Importantly, SwissTargetPrediction predicted VEGFR2 as an underlying target for FO8643. Molecular docking simulation further indicated that FO8643 forms hydrogen bonds and hydrophobic interactions within the VEGFR2 kinase domain. Moreover, FO8643 directly inhibited VEGFR2 kinase activity and its downstream action including MAPK and PI3K/Akt signaling pathways in HUH-7 cells. Encouragingly, FO8643 decreased angiogenesis in the chorioallantoic membrane assay in vivo. Collectively, FO8643 is a novel ARS-type compound exerting potential VEGFR2 inhibition. FO8643 may be a viable drug candidate in cancer therapy.
Collapse
|
12
|
Artemisinin derivative FO-ARS-123 as a novel VEGFR2 inhibitor suppresses angiogenesis, cell migration, and invasion. Chem Biol Interact 2022; 365:110062. [DOI: 10.1016/j.cbi.2022.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
|
13
|
Janjić K, Agis H, Moritz A, Rausch‐Fan X, Andrukhov O. Effects of collagen membranes and bone substitute differ in periodontal ligament cell microtissues and monolayers. J Periodontol 2022; 93:697-708. [PMID: 34223638 PMCID: PMC9291292 DOI: 10.1002/jper.21-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Barrier membranes and bone substitute are major tools of guided tissue regeneration (GTR) after periodontal disease. Integrity of the periodontal ligament plays a key role in periodontal health, but its functionality fails to be fully re-established by GTR after disease or trauma. Microtissue models suggest an in vivo-like model to develop novel GTR approaches due to its three-dimensionality. This study aims to assess the effects of collagen membranes and bone substitute on cell viability, adhesion and gene expression of regenerative and inflammatory biomarkers by periodontal ligament cell (PDLC) microtissues. METHODS Human PDLC microtissues and monolayers were cultured on collagen membranes or bone substitute. After 24 hours incubation, metabolic activity, focal adhesion, mRNA and protein production of collagen-type-I (COL1A1), periostin (POSTN), vascular endothelial growth factor (VEGF), angiogenin (ANG), interleukin (IL)6 and IL8 were measured by resazurin-based toxicity assay, focal adhesion staining, quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS PDLC microtissues and monolayers were viable on collagen membranes and bone substitute, but microtissues were less metabolically active. Dominant staining of actin filaments was found in PDLC microtissues on collagen membranes. COL1A1, POSTN, VEGF, ANG and IL6 were modulated in PDLC microtissues on bone substitute, while there were no significant changes on collagen membranes. PDLC monolayers showed a different character of gene expression changes. CONCLUSIONS PDLC microtissues and monolayers react diversely to collagen membranes and bone substitute. Further descriptive and mechanistic tests will be required to clarify the potential of PDLC microtissues as in vivo-like model for GTR.
Collapse
Affiliation(s)
- Klara Janjić
- Competence Center for Periodontal Research, University Clinic of DentistryMedical University of ViennaViennaAustria
- Center of Clinical Research, University Clinic of DentistryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Hermann Agis
- Austrian Cluster for Tissue RegenerationViennaAustria
- Division of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Andreas Moritz
- Austrian Cluster for Tissue RegenerationViennaAustria
- Division of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Xiaohui Rausch‐Fan
- Center of Clinical Research, University Clinic of DentistryMedical University of ViennaViennaAustria
- Division of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of DentistryMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Biofunctionalization of Xenogeneic Collagen Membranes with Autologous Platelet Concentrate-Influence on Rehydration Protocol and Angiogenesis. Biomedicines 2022; 10:biomedicines10030706. [PMID: 35327506 PMCID: PMC8945896 DOI: 10.3390/biomedicines10030706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The aim of this study was to analyze possible interactions of different xenogeneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®, Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood, saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24 and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05) was shown. After 72 h, CM in combination with PRF induced a statistically significant addition to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance CM vascularization.
Collapse
|
15
|
Blatt S, Krüger M, Kämmerer PW, Thiem DGE, Matheis P, Eisenbeiß AK, Wiltfang J, Al-Nawas B, Naujokat H. Non-Interventional Prospective Observational Study of Platelet Rich Fibrin as a Therapy Adjunctive in Patients with Medication-Related Osteonecrosis of the Jaw. J Clin Med 2022; 11:jcm11030682. [PMID: 35160132 PMCID: PMC8837070 DOI: 10.3390/jcm11030682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Medication-related osteonecrosis (MRONJ) of the jaw is a severe and feared side effect of antiresorptive therapy in the oncological setting. With growing evidence that impaired angiogenesis may represent a key factor in pathogenesis, the aim of this study was to evaluate an autologous platelet concentrate as a possible additive in surgical therapy to optimize vascularization and, subsequently, resolution rates. MATERIAL AND METHODS A non-interventional, prospective, multicenter study was conducted, and all patients with stage I-III MRONJ, undergoing antiresorptive therapy for an oncological indication, were included. The necrosis was treated surgically without (study arm A) or with (arm B) the addition of an autologous platelet concentrate (platelet-rich fibrin, PRF). RESULTS After 5, 14, and 42 days postoperative, wound healing (primary outcome: mucosal integrity) as well as downstaging, pain perception, and oral health-related quality of life (secondary outcome) were assessed via clinical evaluation. Among the 52 patients included, primarily with MRONJ stage I and II, the use of PRF as an additive in surgical therapy did not display a significant advantage for wound healing (p = 0.302), downstaging (p = 0.9), pain reduction (p = 0.169), or quality of life (p = 0.9). SUMMARY In conclusion, PRF as an adjunct did not significantly optimize wound healing. Further, no significant changes in terms of downstaging, pain sensation, and oral health-related quality of life were found.
Collapse
Affiliation(s)
- Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center, 55131 Mainz, Germany; (M.K.); (P.W.K.); (D.G.E.T.); (P.M.); (B.A.-N.)
- Correspondence: ; Tel.: +49-6131-173071
| | - Maximilian Krüger
- Department of Oral and Maxillofacial Surgery, University Medical Center, 55131 Mainz, Germany; (M.K.); (P.W.K.); (D.G.E.T.); (P.M.); (B.A.-N.)
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center, 55131 Mainz, Germany; (M.K.); (P.W.K.); (D.G.E.T.); (P.M.); (B.A.-N.)
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center, 55131 Mainz, Germany; (M.K.); (P.W.K.); (D.G.E.T.); (P.M.); (B.A.-N.)
| | - Philipp Matheis
- Department of Oral and Maxillofacial Surgery, University Medical Center, 55131 Mainz, Germany; (M.K.); (P.W.K.); (D.G.E.T.); (P.M.); (B.A.-N.)
| | - Anne-Katrin Eisenbeiß
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Christian-Albrechts-University, 24118 Kiel, Germany; (A.-K.E.); (J.W.); (H.N.)
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Christian-Albrechts-University, 24118 Kiel, Germany; (A.-K.E.); (J.W.); (H.N.)
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center, 55131 Mainz, Germany; (M.K.); (P.W.K.); (D.G.E.T.); (P.M.); (B.A.-N.)
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Christian-Albrechts-University, 24118 Kiel, Germany; (A.-K.E.); (J.W.); (H.N.)
| |
Collapse
|
16
|
REIS NTDA, João Lucas Carvalho PAZ, PARANHOS LR, BERNARDINO ÍDM, MOURA CCG, IRIE MS, SOARES PBF. Use of platelet-rich fibrin for bone repair: a systematic review and meta-analysis of preclinical studies. Braz Oral Res 2022; 36:e129. [DOI: 10.1590/1807-3107bor-2022.vol36.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
|
17
|
From Blood to Bone-The Osteogenic Activity of L-PRF Membranes on the Ex Vivo Embryonic Chick Femur Development Model. MATERIALS 2021; 14:ma14247830. [PMID: 34947427 PMCID: PMC8707053 DOI: 10.3390/ma14247830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: To evaluate the effects of the direct and indirect contact of leukocyte and platelet-rich fibrin (L-PRF) on bone development, in an ex vivo embryonic chick femur model. (2) Methods: Both sections of L-PRF membranes (red and yellow portions) were evaluated with scanning electron microscopy and histochemical staining. The in vivo angiogenic activity was evaluated using a chorioallantoic membrane model. The osteogenic activity was assessed with an organotypic culture of embryonic chick femora through direct and indirect contact, and assessment was conducted by microtomographic and histological analysis. Descriptive statistics, One-Way ANOVA and Tukey’s multiple comparisons tests were performed for datasets that presented a normal distribution, and Kruskal-Wallis tests were performed for non-parametric datasets. A significance level of 0.05 was considered. (3) Results: The L-PRF induced angiogenesis reflected by a higher number and a larger and more complex gauge in the vessels that invaded the membrane. The physical presence of the membrane over the bone (direct contact) unleashes the full potential of the L-PRF effects on bone growth enhancement. The greatest increase in mineral content was observed in the diaphysis region. (4) Conclusion: The L-PRF direct contact group presented higher values on mineral content for bone volume, bone surface and bone mineral density than the indirect contact and control groups.
Collapse
|
18
|
Kyyak S, Pabst A, Heimes D, Kämmerer PW. The Influence of Hyaluronic Acid Biofunctionalization of a Bovine Bone Substitute on Osteoblast Activity In Vitro. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2885. [PMID: 34072146 PMCID: PMC8198444 DOI: 10.3390/ma14112885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Bovine bone substitute materials (BSMs) are used for oral bone regeneration. The objective was to analyze the influence of BSM biofunctionalization via hyaluronic acid (HA) on human osteoblasts (HOBs). BSMs with ± HA were incubated with HOBs including HOBs alone as a negative control. On days 3, 7 and 10, cell viability, migration and proliferation were analyzed by fluorescence staining, scratch wound assay and MTT assay. On days 3, 7 and 10, an increased cell viability was demonstrated for BSM+ compared with BSM- and the control (each p ≤ 0.05). The cell migration was enhanced for BSM+ compared with BSM- and the control after day 3 and day 7 (each p ≤ 0.05). At day 10, an accelerated wound closure was found for the control compared with BSM+/- (each p < 0.05). The highest proliferation rate was observed for BSM+ on day 3 (p ≤ 0.05) followed by BSM- and the control (each p ≤ 0.05). At day 7, a non-significantly increased proliferation was shown for BSM+ while the control was higher than BSM- (each p < 0.05). The least proliferation activity was observed for BSM- (p < 0.05) at day 10. HA biofunctionalization of the BSMs caused an increased HOB activity and might represent a promising alternative to BSM- in oral bone regeneration.
Collapse
Affiliation(s)
- Solomiya Kyyak
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (S.K.); (D.H.)
| | - Andreas Pabst
- Department of Oral- and Maxillofacial Surgery, Federal Armed Forces Hospital, 56072 Koblenz, Germany;
| | - Diana Heimes
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (S.K.); (D.H.)
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, 55131 Mainz, Germany; (S.K.); (D.H.)
| |
Collapse
|
19
|
Blatt S, Thiem DGE, Kyyak S, Pabst A, Al-Nawas B, Kämmerer PW. Possible Implications for Improved Osteogenesis? The Combination of Platelet-Rich Fibrin With Different Bone Substitute Materials. Front Bioeng Biotechnol 2021; 9:640053. [PMID: 33816452 PMCID: PMC8010662 DOI: 10.3389/fbioe.2021.640053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Bone substitute materials (BSM) are widely used in oral regeneration, but sufficient angiogenesis is crucial for osteogenesis. The combination of BSM with autologous thrombocyte concentrations such as platelet-rich fibrin (PRF) may represent a clinical approach to overcome this limitation. This study analyzes the early influence on osteoblast (HOB) in vitro. Here, four different BSM (allogeneic, alloplastic, and two of xenogeneic origin) were combined with PRF. After the incubation with osteoblasts for 24 h, cell viability, migration, and proliferation were assessed. Next, marker of proliferation, migration, and differentiation were evaluated on gene and protein levels in comparison to the native BSM and osteoblast alone. Addition of PRF increased viability for both the xenogeneic BSM (p = 0.0008, p = 0.032, respectively) in comparison to HOB and vs. native BSM (p = 0.008), and led to a tendency for increased cell proliferation and migration for all BSM (each p > 0.05). On gene basis, allogeneic and alloplastic BSM displayed a significantly increased RUNX2 expression (each p = 0.050). Expression of alkaline phosphatase for alloplastic (p = 0.050) and collagen-1 for xenogeneic BSM (p = 0.05) were significantly increased in combination with PRF. In addition, bone morphogenic protein was expressed significantly higher when xenogeneic material was combined with PRF in comparison to HOB alone (each p = 0.05). In summary, the combination of PRF with different BSM increases initial viability and may influence early proliferation and migration potential of osteoblast via RUNX2, alkaline phosphatase, collagen, and BMP2 especially in combination with alloplastic and xenogeneic BSM. Biofunctionalization of BSM using PRF might improve osteogenesis and extend the range of indications.
Collapse
Affiliation(s)
- Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Solomiya Kyyak
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Koblenz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|