1
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
MacMullen C, Sharma N, Davis RL. Mitochondrial dynamics and bioenergetics in Alzheimer's induced pluripotent stem cell-derived neurons. Brain 2025; 148:1405-1420. [PMID: 39513728 DOI: 10.1093/brain/awae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of Alzheimer's disease, but the scope and severity of these specific deficits across forms of Alzheimer's disease are not well characterized. We designed a high-throughput longitudinal phenotypic assay to track mitochondrial dynamics and bioenergetics in glutamatergic induced pluripotent stem cell (iPSC)-derived human neurons possessing mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2) and the amyloid beta precursor protein (APP). Each gene set was composed of iPSC-derived neurons from an Alzheimer's disease patient in addition to two to three engineered mutations with appropriate isogenic and age-matched controls. These iPSC-derived neurons were imaged every other day, beginning at 10 days in vitro, to assess how mitochondrial length and content change over a 10 day time course using a mitochondrially targeted reporter. A second cytosolic reporter allowed for visualization of neurites. Bioenergetics assays, focusing on mitochondrial respiration and individual electron transport chain complexes, were also surveyed over this time course. Mutations in all three genes altered mitochondrial function measured by basal, ATP-linked and maximal oxygen consumption rates and by spare respiratory capacity, with PSEN1/PSEN2 alleles being more severe than APP mutations. Electron flow through Complexes I-IV was decreased in PSEN1/PSEN2 mutations but, in contrast, APP alleles had only modest impairments of complexes I and II. We measured aspects of mitochondrial dynamics, including fragmentation and neurite degeneration, both of which were dramatic in PSEN1/PSEN2 alleles, but essentially absent in APP alleles. The marked differences in mitochondrial pathology might occur from the distinct ways in which amyloids are processed into amyloid beta peptides and might be correlated with the disease severity.
Collapse
Affiliation(s)
- Courtney MacMullen
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Neelam Sharma
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Bell SM, Wareing H, Capriglia F, Hughes R, Barnes K, Hamshaw A, Adair L, Shaw A, Olejnik A, De S, New E, Shaw PJ, De Marco M, Venneri A, Blackburn DJ, Ferraiuolo L, Mortiboys H. Increasing hexokinase 1 expression improves mitochondrial and glycolytic functional deficits seen in sporadic Alzheimer's disease astrocytes. Mol Psychiatry 2025; 30:1369-1382. [PMID: 39271753 PMCID: PMC11919762 DOI: 10.1038/s41380-024-02746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Abnormalities in cellular metabolism are seen early in Alzheimer's disease (AD). Astrocyte support for neuronal function has a high metabolic demand, and astrocyte glucose metabolism plays a key role in encoding memory. This indicates that astrocyte metabolic dysfunction might be an early event in the development of AD. In this paper we interrogate glycolytic and mitochondrial functional changes and mitochondrial structural alterations in patients' astrocytes derived with a highly efficient direct conversion protocol. In astrocytes derived from patients with sporadic (sAD) and familial AD (fAD) we identified reductions in extracellular lactate, total cellular ATP and an increase in mitochondrial reactive oxygen species. sAD and fAD astrocytes displayed significant reductions in mitochondrial spare respiratory capacity, have altered mitochondrial membrane potential and a stressed mitochondrial network. A reduction in glycolytic reserve and glycolytic capacity is seen. Interestingly, glycolytic reserve, mitochondrial spare respiratory capacity and extracellular lactate levels correlated positively with neuropsychological tests of episodic memory affected early in AD. We identified a deficit in the glycolytic enzyme hexokinase 1 (HK1), and correcting this deficit improved the metabolic phenotype in sAD not fAD astrocytes. Importantly, the amount of HK1 at the mitochondria was shown to be reduced in sAD astrocytes, and not in fAD astrocytes. Overexpression of HK1 in sAD astrocytes increases mitochondrial HK1 levels. In fAD astrocytes HK1 levels were unaltered at the mitochondria after overexpression. This study highlights a clear metabolic deficit in AD patient-derived astrocytes and indicates how HK1, with its roles in both oxidative phosphorylation and glycolysis, contributes to this.
Collapse
Affiliation(s)
- Simon M Bell
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK.
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK.
| | - Hollie Wareing
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Francesco Capriglia
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Rachel Hughes
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Katy Barnes
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alexander Hamshaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Liam Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Allan Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alicja Olejnik
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Suman De
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Elizabeth New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniel J Blackburn
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Firth Court, Sheffield, S10 2TN, UK.
| |
Collapse
|
4
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
5
|
Dhapola R, Kumari S, Sharma P, Vellingiri B, HariKrishnaReddy D. Advancements in autophagy perturbations in Alzheimer's disease: Molecular aspects and therapeutics. Brain Res 2025; 1851:149494. [PMID: 39922409 DOI: 10.1016/j.brainres.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Emerging evidences suggest that autophagy, a key cellular process responsible for degrading and recycling damaged organelles and proteins, plays a crucial role in maintaining neuronal health. Dysfunctional autophagy has been linked to the pathogenesis of Alzheimer's disease (AD), contributing to the accumulation of misfolded proteins and cellular debris. Molecular mechanisms underlying autophagy dysfunction in AD involve amyloid-beta (Aβ) and tau accumulation, neuroinflammation, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress. Disrupted signaling pathways such as TRIB3, Nmnat and BAG3 that regulate key processes like autophagosome initiation, lysosome function, and protein homeostasis also play a crucial role in the pathogenesis. Restoration of autophagy by modulating these molecular and signaling pathways may be an effective therapeutic strategy for AD. Studies have found few drugs targeting autophagy dysregulation in AD. These drugs include metformin that has been found to modulate the expression of TRIB3 for autophagy regulation. Another drug, resveratrol has been reported to augment the activity of Nmnat thus, increases autophagy flux. BACE1 and mTOR inhibitors like arctigenin, nilvadipine and dapagliflozin were also found to restore autophagy. This study elaborates recent advances in signaling and molecular pathways and discusses current and emerging therapeutic interventions targeting autophagy dysfunction in AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab 151401 Bathinda, Punjab, India.
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India.
| |
Collapse
|
6
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
7
|
Riou A, Broeglin A, Grimm A. Mitochondrial transplantation in brain disorders: Achievements, methods, and challenges. Neurosci Biobehav Rev 2025; 169:105971. [PMID: 39638101 DOI: 10.1016/j.neubiorev.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Mitochondrial transplantation is a new treatment strategy aimed at repairing cellular damage by introducing healthy mitochondria into injured cells. The approach shows promise in protecting brain function in various neurological disorders such as traumatic brain injury/ischemia, neurodegenerative diseases, cognitive disorders, and cancer. These conditions are often characterized by mitochondrial dysfunction, leading to impaired energy production and neuronal death. The review highlights promising preclinical studies where mitochondrial transplantation has been shown to restore mitochondrial function, reduce inflammation, and improve cognitive and motor functions in several animal models. It also addresses significant challenges that must be overcome before this therapy can be clinically applied. Current efforts to overcome these challenges, including advancements in isolation techniques, cryopreservation methods, finding an appropriate mitochondria source, and potential delivery routes, are discussed. Considering the rising incidence of neurological disorders and the limited effectiveness of current treatments, this review offers a comprehensive overview of the current state of mitochondrial transplantation research and critically assesses the remaining obstacles. It provides valuable insights that could steer future studies and potentially lead to more effective treatments for various brain disorders.
Collapse
Affiliation(s)
- Aurélien Riou
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Aline Broeglin
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel 4055, Switzerland; Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, Basel 4002, Switzerland.
| |
Collapse
|
8
|
Beresford-Webb JA, McAllister CJ, Sleigh A, Walpert MJ, Holland AJ, Zaman SH. Mitochondrial Dysfunction Correlates with Brain Amyloid Binding, Memory, and Executive Function in Down Syndrome: Implications for Alzheimer's Disease in Down Syndrome. Brain Sci 2025; 15:130. [PMID: 40002463 PMCID: PMC11853603 DOI: 10.3390/brainsci15020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Mitochondrial dysfunction is increasingly recognized as a central contributor to neurodegenerative diseases and age-related cognitive decline. Individuals with Down syndrome (DS) are at high risk of neurodegeneration due to Alzheimer's disease (AD). This study aims to explore the relationship between mitochondrial dysfunction, brain amyloid-beta (Aβ) deposition, and cognitive decline in this population. Methods: We investigated mitochondrial function, brain amyloid-beta burden, and cognitive performance in a pilot study of a cohort of 10 eligible adults with DS selected from a sample of 28 individuals with DS. Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) was used to assess mitochondrial function in skeletal muscle using a post-exercise paradigm, while positron emission tomography using 11C-Pittsburgh compound B (PiB-PET) measured brain Aβ deposition. Cognitive performance was evaluated using the Cambridge Cognitive Examination adapted for individuals with Down syndrome (CAMCOG-DS) and executive function batteries. Results: Significant correlations were observed between slowed phosphocreatine (PCr) recovery in muscle and increased Aβ deposition in key brain regions, particularly the striatum. Cognitive performance inversely correlated with mitochondrial function, with pronounced deficits in memory and executive function tasks. Notably, an individual carrying the APOE-ε4 allele exhibited the poorest mitochondrial function, highest Aβ burden, and most severe cognitive impairment, suggesting a potential interaction between genetic risk and mitochondrial health. Conclusions: These findings highlight the role of mitochondrial dysfunction in DS-associated AD (DSAD) and its impact on cognition in adults. The results support targeting mitochondrial pathways as a potential therapeutic strategy to mitigate AD progression in DS populations. Further research with larger cohorts and longitudinal designs is needed to clarify causative mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Jessica A. Beresford-Webb
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Catherine J. McAllister
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge and NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Madeleine J. Walpert
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Anthony J. Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| | - Shahid H. Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
- Cambridgeshire & Peterborough Foundation NHS Trust, Douglas House, Trumpington Road, Cambridge CB2 8AH, UK
| |
Collapse
|
9
|
Liu C, Wang C, Jiang J, Bo Y, Nan L, Zhang Y, Zhu K, Wang X, Feng X, Lian X, Qin S. Role of metabolic characteristics in the co-occurrence of insomnia, Alzheimer's disease, and Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2025; 16:1436171. [PMID: 39834620 PMCID: PMC11743693 DOI: 10.3389/fnagi.2024.1436171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective There reportedly exists a significant comorbidity between insomnia and neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), indicative of a potential link to serum metabolic dysregulation. Method To elucidate shared pathophysiological mechanisms between insomnia and AD/PD, we performed comprehensive two-sample Mendelian randomization (MR) analyses, investigating 1,400 serum metabolic characteristics for their causal relationships with the risks of insomnia, AD, widely defined AD (WDAD), and PD. We employed publicly available genetic data; the primary estimate was determined using inverse-variance weighting, supplemented by weighted median, simple mode, weighted mode, and the MR-PRESSO and MR-Egger methods to evaluate heterogeneity and pleiotropy. Results The ratio of N-palmitoyl-sphingosine to N-palmitoyl-sphinganine is linked to higher risks of insomnia (OR = 1.137, 95% CI = 1.015-1.273, p = 0.026) and AD (OR = 1.090, 95% CI = 1.005-1.183, p = 0.037). The acetylcarnitine to propionylcarnitine ratio is a risk factor for insomnia (OR = 1.190, 95% CI = 1.003-1.370, p = 0.016) but has protective effects against AD (OR = 0.868, 95% CI = 0.784-0.961, p = 0.006) and WDAD (OR = 0.892, 95% CI = 0.817-0.973, p = 0.010). Glutamine conjugate of C7H12O2 levels are associated with reduced risk of insomnia (OR = 0.863, 95% CI = 0.749-0.995, p = 0.042) and PD (OR = 0.856, 95% CI = 0.746-0.981, p = 0.026). Conclusion Our findings highlight the crucial role of serum metabolic characteristics in the comorbidity of insomnia with neurodegenerative diseases, providing valuable insights into prospective therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Chengyong Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chi Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Jiang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuyang Bo
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lixiu Nan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kongxi Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqiu Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinxin Feng
- Ningbo Traditional Chinese Medicine Hospital, Ningbo, Zhejiang Province, China
| | - Xiaoyang Lian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan Qin
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Keskinoz EN, Celik M, Toklucu ES, Birisik K, Erisir A, Oz-Arslan D. Mitochondrial Alterations in Alzheimer's Disease: Insight from the 5xFAD Mouse Model. Mol Neurobiol 2024:10.1007/s12035-024-04632-4. [PMID: 39658775 DOI: 10.1007/s12035-024-04632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Mitochondrial dysfunction is increasingly recognized as a key factor in Alzheimer's disease (AD) pathogenesis, but the precise relationship between mitochondrial dynamics and proteinopathies in AD remains unclear. This study investigates the role of mitochondrial dynamics and function in the hippocampal tissue and peripheral blood mononuclear cells (PBMCs) of 5xFAD transgenic mice, as a model of AD. The levels of mitochondrial fusion proteins OPA1 and MFN2 and fission proteins DRP1 and phospho-DRP1 (S616) at 3, 6, and 9 months of age were assessed. Western blot analysis revealed significantly lower levels of OPA1 and MFN2 in the hippocampus of 6- and 9-month-old transgenic (TG) 5xFAD mice compared to controls (CTR), while DRP1 and pDRP1 levels were increased in 9-month-old TG mice. Additionally, MFN2 were decreased in the PBMCs of 9-month-old TG mice, indicating systemic mitochondrial alterations. Ultrastructural analysis of hippocampal tissues showed substantial alterations in mitochondrial morphology, including abnormalities in size and shape, a preponderance of teardrop-shaped mitochondria, and alterations in the somatic mitochondria-ER complex. Notably, mitochondria-associated ER contact sites were more distant in TG mice, suggesting functional impairments. Flow cytometric measurements demonstrated decreased mitochondrial membrane potential and mass, along with increased superoxide production, in the PBMCs of TG mice, particularly at 9 months, highlighting compromised mitochondrial function. Levels of key mitochondrial proteins including VDAC, TOM2O, and mitophagy-related protein PINK1 levels altered in both central and peripheral tissue of TG mice. These findings suggest that mitochondrial dysfunction and altered dynamics are early events in AD development in 5xFAD mice, manifesting in both central and peripheral tissues, and support the notion that mitochondrial abnormalities are an integral component of AD pathology. These insights might lead to the development of targeted therapies that modulate mitochondrial dynamics and function to mitigate AD progression.
Collapse
Affiliation(s)
- Elif Nedret Keskinoz
- Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
- Institute of Health Science, Department of Anatomy, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
| | - Musa Celik
- Institute of Health Science, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
| | - Ezgi Sila Toklucu
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Kerem Birisik
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Devrim Oz-Arslan
- Institute of Health Science, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey.
- Department of Biophysics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No. 32, Atasehir, Istanbul, Turkey.
| |
Collapse
|
11
|
Claro-Cala CM, Rivero-Pino F, Torrecillas-López M, Jimenez-Gonzalez V, Montserrat-de la Paz S. Immunonutrition: future perspective in neurodegenerative disorders. Nutr Neurosci 2024:1-12. [PMID: 39561029 DOI: 10.1080/1028415x.2024.2425565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The relevance of lifestyle, including diet and exercise, has been associated with improved learning and memory capacity, delayed age-related cognitive decline, and a reduced risk of neurodegeneration. Most neurodegenerative diseases are defined as complex multifactorial disorders in which genetic and environmental factors greatly contribute to their onset. Although inflammatory cells produce reactive oxygen species (ROS), oxidative stress itself might exert pro-inflammatory effects and an uncontrolled response could lead to a state of chronic inflammation. Anti-inflammatory dietary approaches unify the disciplines of nutrition, immunity, and neurology. Personalized dietary interventions will be developed based on an individual's genetic makeup, metabolic profile, and gut microbiota composition, thanks to advances in genomics, metabolomics, and microbiome research. The relevance of dietary patterns in decreasing inflammation relies on the role of specific antioxidant nutrients, which might contribute to a decrease in the levels of ROS. This review aims to summarize recent advancements in neuroscience and immunology that have revealed the crucial role that diet and the immune system play in brain function and disease progression. Nutrition influences the immune system, and in turn, the immune system impacts neurological health. This bidirectional relationship suggests that targeted nutritional interventions could modulate immune responses to delay or mitigate the progression of neurodegenerative diseases potentially. This approach focuses on the use of specific nutrients and dietary components that influence the immune system and inflammatory pathway. Key elements of immunonutrition include omega-3 fatty acids, antioxidants, vitamins and various bioactive compounds found in foods.
Collapse
Affiliation(s)
- Carmen María Claro-Cala
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fernando Rivero-Pino
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - María Torrecillas-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Víctor Jimenez-Gonzalez
- CITIUS (Centre for Research, Technology, and Innovation), University of Seville, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
13
|
Haessler A, Candlish M, Hefendehl JK, Jung N, Windbergs M. Mapping cellular stress and lipid dysregulation in Alzheimer-related progressive neurodegeneration using label-free Raman microscopy. Commun Biol 2024; 7:1514. [PMID: 39548189 PMCID: PMC11568221 DOI: 10.1038/s42003-024-07182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Aβ plaques are a main feature of Alzheimer's disease, and pathological alterations especially in their microenvironment have recently come into focus. However, a holistic imaging approach unveiling these changes and their biochemical nature is still lacking. In this context, we leverage confocal Raman microscopy as unbiased tool for non-destructive, label-free differentiation of progressive biomolecular changes in the Aβ plaque microenvironment in brain tissue of a murine model of cerebral amyloidosis. By developing a detailed approach, overcoming many challenges of chemical imaging, we identify spatially-resolved molecular signatures of disease-associated structures. Specifically, our study reveals nuclear condensation, indicating cellular degeneration, and increased levels of cytochrome c, showing mitochondrial dysfunction, in the vicinity of Aβ plaques. Further, we observe severe accumulation of especially unsaturated lipids. Thus, our study contributes to a comprehensive understanding of disease progression in the Aβ plaque microenvironment, underscoring the prospective of Raman imaging in neurodegenerative disorder research.
Collapse
Affiliation(s)
- Annika Haessler
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Candlish
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Jasmin K Hefendehl
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Lee S, Kang M, Lee S, Yoon S, Cho Y, Min D, Ann D, Shin J, Paik YK, Jo D. AAV-aMTD-Parkin, a therapeutic gene delivery cargo, enhances motor and cognitive functions in Parkinson's and Alzheimer's diseases. Pharmacol Res 2024; 208:107326. [PMID: 39069196 DOI: 10.1016/j.phrs.2024.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD), have a global prevalence and profoundly impact both motor and cognitive functions. Although adeno-associated virus (AAV)-based gene therapy has shown promise, its application for treating central nervous system (CNS) diseases faces several challenges, including effective delivery of AAV vectors across the blood-brain barrier, determining optimal dosages, and achieving targeted distribution. To address these challenges, we have developed a fusion delivery therapeutic cargo called AAV-aMTD-Parkin, which combines a hydrophobic cell-penetrating peptide sequence with the DNA sequences of AAV and Parkin. By employing this fusion delivery platform at lower dosages compared to zolgensma, we have achieved significant enhancements in cell and tissue permeability, while reducing the occurrence of common pathological protein aggregates. Consequently, motor and cognitive functions were restored in animal models of PD and AD. With its dual functionality in addressing PD and AD, AAV-aMTD-Parkin holds immense potential as a novel class of therapeutic biologics for prevalent CNS diseases.
Collapse
Affiliation(s)
- Seokwon Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Mingu Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Seungwoo Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Sangsun Yoon
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Yeonjin Cho
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Dongjae Min
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Daye Ann
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Jisoo Shin
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Young-Ki Paik
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 07806, South Korea.
| |
Collapse
|
15
|
Bell SM, Hariharan R, Laud PJ, Majid A, de Courten B. Histidine-containing dipeptide supplementation improves delayed recall: a systematic review and meta-analysis. Nutr Rev 2024; 82:1372-1385. [PMID: 38013229 DOI: 10.1093/nutrit/nuad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
CONTEXT Histidine-containing dipeptides (carnosine, anserine, beta-alanine and others) are found in human muscle tissue and other organs like the brain. Data in rodents and humans indicate that administration of exogenous carnosine improved cognitive performance. However, RCTs results vary. OBJECTIVES To perform a systematic review and meta-analysis of randomized controlled trials (RCTs) of histidine-containing dipeptide (HCD) supplementation on cognitive performance in humans to assess its utility as a cognitive stabiliser. DATA SOURCES OVID Medline, Medline, EBM Reviews, Embase, and Cumulative Index to Nursing and Allied Health Literature databases from 1/1/1965 to 1/6/2022 for all RCT of HCDs were searched. DATA EXTRACTION 2653 abstracts were screened, identifying 94 full-text articles which were assessed for eligibility. Ten articles reporting the use of HCD supplementation were meta-analysed. DATA ANALYSIS The random effects model has been applied using the DerSimonian-Laird method. HCD treatment significantly increased performance on Wechsler Memory Scale (WMS) -2 Delayed recall (Weighted mean difference (WMD) (95% CI (CI)) = 1.5 (0.6, 2.5), P < .01). Treatment with HCDs had no effect on Alzheimer's Disease Assessment Scale-Cognitive (WMD (95% CI) = -0.2 (-1.1, 0.7), P = .65, I2 = 0%), Mini-Mental State Examination (WMD (95% CI) = 0.7 (-0.2, 1.5), P = .14, I2 = 42%), The Wechsler Adult Intelligence Scale (WAIS) Digit span Backward (WMD (95% CI) = 0.1 (-0.3, 0.5), P = .51, I2 = 0%), WAIS digit span Forward (WMD (95% CI) = 0.0 (-0.3, 0.4), P = .85, I2 = 33%) and the WMS-1 Immediate recall (WMD (95% CI) = .7 (-.2, 1.5), P = .11, I2 = 0%). The effect on delayed recall remained in subgroup meta-analysis performed on studies of patients without mild cognitive impairment (MCI), and in those without MCI where average age in the study was above 65. CONCLUSION HCD, supplementation improved scores on the Delayed recall examination, a neuropsychological test affected early in Alzheimer's disease. Further studies are needed in people with early cognitive impairment with longer follow-up duration and standardization of carnosine doses to delineate the true effect. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42017075354.
Collapse
Affiliation(s)
- Simon M Bell
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Rohit Hariharan
- Department of Medicine, School of Clinical Sciences, Monash University, Australia
| | - Peter J Laud
- Statistical Services Unit, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Australia
- Health & Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Wu S, Miao J, Zhu S, Wu X, Shi J, Zhou J, Xing Y, Hu K, Ren J, Yang H. Pongamol Prevents Neurotoxicity via the Activation of MAPKs/Nrf2 Signaling Pathway in H 2O 2-Induced Neuronal PC12 Cells and Prolongs the Lifespan of Caenorhabditis elegans. Mol Neurobiol 2024; 61:8219-8233. [PMID: 38483657 DOI: 10.1007/s12035-024-04110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 09/21/2024]
Abstract
Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shaojun Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Miao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Xinyuan Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jindan Shi
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jichao Zhou
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Yi Xing
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Kun Hu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
17
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
18
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04468-y. [PMID: 39254911 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Zhang Z, Wu H, Wang S, Li Y, Yang P, Xu L, Liu Y, Liu M. PRG ameliorates cognitive impairment in Alzheimer's disease mice by regulating β-amyloid and targeting the ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155671. [PMID: 38763005 DOI: 10.1016/j.phymed.2024.155671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND PRG is derived from Phellinus ribis and is a homogeneous polysaccharide with well-defined structural information. PRG was found to have significant in vitro neurotrophic and neuroprotective activities. Thus, PRG might be a potential treatment for Alzheimer's disease. However, the related mechanisms of action are still unclear, so deeper in vivo experimental validation and the potential mechanisms need to be investigated. PURPOSE The effects of PRG on AD mice were investigated using Senescence-accelerated SAMP8 mice as an AD model to elucidate the crucial molecular mechanisms. METHODS PRG was obtained from Phellinus ribis by water-alcohol precipitation, column chromatography, and ultrafiltration. The Morris water maze and novel object recognition behavioral assays were used to evaluate the effects of PRG in AD mice. Nissl staining, the TUNEL apoptosis assay, and Golgi staining were used to assess brain neuronal cell damage, apoptosis, and neuronal status. Enzyme-linked immunosorbent assays, Western blotting, and immunofluorescence were used to explore the impacts of correlated factors and protein pathways under relevant mechanisms. RESULTS The findings suggest that PRG improved learning ability and spatial memory capacity in SAMP8 mice. PRG hastened the disintegration of β-amyloid, reduced the content and abnormal accumulation of the toxic Aβ1-42 protein, and decreased apoptosis. PRG activated the BDNF/ERK/CREB signaling pathway through a cascade, exerted neurotrophic effects, regulated cell proliferation and differentiation, increased neuronal dendritic branching and spine density, and improved synaptic plasticity. CONCLUSION PRG promoted β-amyloid degradation to reduce neuronal damage and apoptosis. It exerted neurotrophic effects by activating the BDNF/ERK/CREB pathway, promoting neuronal dendritic branching and dendritic spine growth, regulating cell proliferation and differentiation, and improving synaptic plasticity, which improved AD. Taken together, as a novel natural active polysaccharide with a well-defined structure, PRG affected AD symptoms in senescence-accelerated mice by interacting with multiple targets. The results indicate that PRG is a promising potential anti-AD drug candidate.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
20
|
Liu A, Citu C, Enduru N, Chen X, Manuel AM, Sinha T, Gorski D, Fernandes BS, Yu M, Schulz PE, Simon LM, Soto C, Zhao Z. Single-nucleus multiomics reveals the disrupted regulatory programs in three brain regions of sporadic early-onset Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600720. [PMID: 38979371 PMCID: PMC11230393 DOI: 10.1101/2024.06.25.600720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis- regulatory elements (cCREs) across brain regions. We prioritized seven conservative transcription factors in glial cells in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in regulating sEOAD-associated genes. Moreover, we identified the top 25 altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. We reported 38 cCREs linked to sEOAD-associated genes overlapped with late-onset AD risk loci, and sEOAD cCREs enriched in neuropsychiatric disorder risk loci. This atlas helps dissect transcriptional and chromatin dynamics in sEOAD, providing a key resource for AD research.
Collapse
|
21
|
Ropert B, Gallrein C, Schumacher B. DNA repair deficiencies and neurodegeneration. DNA Repair (Amst) 2024; 138:103679. [PMID: 38640601 DOI: 10.1016/j.dnarep.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.
Collapse
Affiliation(s)
- Baptiste Ropert
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Christian Gallrein
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, Jena 07745, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.
| |
Collapse
|
22
|
Patel KS, Dharamsi A, Priya M, Jain S, Mandal V, Girme A, Modi SJ, Hingorani L. Saffron (Crocus sativus L.) extract attenuates chronic scopolamine-induced cognitive impairment, amyloid beta, and neurofibrillary tangles accumulation in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117898. [PMID: 38341114 DOI: 10.1016/j.jep.2024.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/14/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crocus sativus L. known as saffron, is a popular food condiment with a high aroma, deep colour, and long and thick threads (stigmas) cultivated in Iran, Morocco, Spain, Italy, China, Japan, France, Turkey, and India. In 'Ayurveda', saffron is acknowledged for its immunostimulant, aphrodisiac, cardiotonic, liver tonic, nervine tonic, carminative, diaphoretic, diuretic, emmenagogue, galactagogue, febrifuge, sedative, relaxant, and anxiolytic activities. The renowned Persian physician and philosopher, Avicenna, delineated saffron as an antidepressant, hypnotic, anti-inflammatory, hepatoprotective, bronchodilator, and aphrodisiac in his book, the Canon of Medicine. Within traditional Iranian Medicine (TIM), saffron is characterized as a mood elevator and a rejuvenator for the body and senses. Further, the ethnopharmacological evidence indicates that saffron has shown an effect against neurodegenerative disorders namely, dementia, Alzheimer's, and Parkinson's with its bioactive constituents i.e., carotenoids and apocarotenoids. AIM The present study aimed to investigate the potential of standardized (Kashmir Saffron, India) Crocus sativus extract (CSE) in chronic scopolamine-induced cognitive impairment, amyloid beta (Aβ) plaque, and neurofibrillary tangles (NFT) accumulation in rat brains by targeting AChE inhibition and scopolamine mechanistic effect. METHODS The experimental animals were divided into six groups: group 1: normal control, group 2: scopolamine, group 3,4 and 5 rivastigmine tartrate, CSE (p.o. 10 mg/kg, 15 mg/kg, and 20 mg/kg) respectively. Each treatment group received scopolamine after 20 min of dosing, till 4 weeks. The effects of different treatments on learning, acquisition, and reversal memory were performed using a Morris water maze test. In addition to behavioral assessments, biochemical parameters such as AChE, IL-6, and antioxidants were measured in isolated brains. Histological observations were also conducted to assess the presence of Aβ plaques and NFT. Furthermore, molecular docking was performed to explore the potential AChE inhibitory activity of the bioactive constituents of standardized CSE. RESULTS Scopolamine produces memory impairment, and its chronic administration forms Aβ plaque and NFT in rat brains. Supplementation with CSE in presence of scopolamine has shown remarkable effects on behavioural activity, special acquisition, and reversal memory. The CSE has also shown promising effects on AChE inhibition and antioxidant activity. The results of the docking study also indicate that trans-crocetin, i.e., a biologically active metabolite of Crocins, has strong AChE inhibitory activity, supported by an in vivo animal experiment. CONCLUSION Supplementation with CSE significantly attenuates the formation of Aβ plaque and NFT in the hippocampus at a dose of 20 mg/kg per day. In addition, CSE also counters scopolamine-induced neuroinflammation.
Collapse
Affiliation(s)
- Komal S Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Abhay Dharamsi
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Madhu Priya
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Sanskar Jain
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Vishal Mandal
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | | | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| |
Collapse
|
23
|
Singh A, Tiwari S, Singh S. Pirh2 modulates the mitochondrial function and cytochrome c-mediated neuronal death during Alzheimer's disease. Cell Death Dis 2024; 15:331. [PMID: 38740775 PMCID: PMC11091053 DOI: 10.1038/s41419-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Yang K, Yan Y, Yu A, Zhang R, Zhang Y, Qiu Z, Li Z, Zhang Q, Wu S, Li F. Mitophagy in neurodegenerative disease pathogenesis. Neural Regen Res 2024; 19:998-1005. [PMID: 37862201 PMCID: PMC10749592 DOI: 10.4103/1673-5374.385281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 10/22/2023] Open
Abstract
Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Kan Yang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuqing Yan
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Anni Yu
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Ru Zhang
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan Province, China
| | - Yuefang Zhang
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyi Li
- Neurosurgery Department, Kunming Yenan Hospital, Kunming, Yunnan Province, China
| | - Qianlong Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan Province, China
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Yao X, Ouyang S, Lian Y, Peng Q, Zhou X, Huang F, Hu X, Shi F, Xia J. PheSeq, a Bayesian deep learning model to enhance and interpret the gene-disease association studies. Genome Med 2024; 16:56. [PMID: 38627848 PMCID: PMC11020195 DOI: 10.1186/s13073-024-01330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Despite the abundance of genotype-phenotype association studies, the resulting association outcomes often lack robustness and interpretations. To address these challenges, we introduce PheSeq, a Bayesian deep learning model that enhances and interprets association studies through the integration and perception of phenotype descriptions. By implementing the PheSeq model in three case studies on Alzheimer's disease, breast cancer, and lung cancer, we identify 1024 priority genes for Alzheimer's disease and 818 and 566 genes for breast cancer and lung cancer, respectively. Benefiting from data fusion, these findings represent moderate positive rates, high recall rates, and interpretation in gene-disease association studies.
Collapse
Affiliation(s)
- Xinzhi Yao
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Sizhuo Ouyang
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Yulong Lian
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Peng
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Xionghui Zhou
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Feier Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Hu
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Feng Shi
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Jingbo Xia
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
26
|
Liu X, Zhao Z, Chen D, Zhang Z, Lin X, Shen Z, Lin Q, Fan K, Wang Q, Zhang W, Ou Q. SIRT1 and miR-34a-5p Expression in PBMCs as Potential Biomarkers for Patients With Type 2 Diabetes With Cognitive Impairments. J Clin Endocrinol Metab 2024; 109:815-826. [PMID: 37758217 DOI: 10.1210/clinem/dgad562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
CONTEXT Patients with type 2 diabetes mellitus (T2DM) are at significantly increased risk of Alzheimer disease (AD). However, no biomarkers are available for early identification of patients with T2DM with cognitive impairment (T2DM-CI). Mitochondrial dysfunction is linked to AD. Silent Information Regulator 1 (SIRT1), which is responsible for regulating mitochondrial biogenesis, and its related miRNAs were also altered in AD. OBJECTIVE This study aimed to determine whether mitochondrial function in peripheral blood mononuclear cells (PBMCs) of patients with T2DM-CI was altered and if these alterations could be used as biomarkers. METHODS A total of 374 subjects were enrolled, including AD, T2DM-CI, T2DM-nCI (T2DM without cognitive impairment), and healthy controls. The mitochondrial function was determined using a commercial assay kit. The mitochondrial DNA (mtDNA) content, the expression of SIRT1, and selected miRNAs in PBMCs were measured by quantitative polymerase chain reaction. The correlations and diagnostic accuracy were assessed using the Spearman correlation coefficient or receiver operating characteristics analysis, respectively. RESULTS We found significant changes in mitochondrial function in PBMCs of patients with AD compared with controls (all P < .05), which were not found in T2DM-CI. However, mtDNA content and SIRT1 mRNA expression were lower in PBMCs of patients with T2DM-CI, while miR-34a-5p expression was higher than in patients with T2DM-nCI (all P < .05). A combination of SIRT1 and miR-34a-5p demonstrated excellent discrimination between T2DM-CI and T2DM-nCI (area under the curve = 0.793; sensitivity: 80.01%; specificity: 78.46%). Furthermore, correlation analysis revealed a link between miR-34a-5p expression and hyperglycemia in T2DM-CI. CONCLUSION Our findings revealed that there was an alteration of mitochondria at the peripheral level in patients with T2DM-CI. SIRT1 combined with miR-34a-5p in PBMCs performed well in identifying patients with T2DM-CI and may be a promising biomarker.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhipei Zhao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Dengbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zeqin Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaozhen Lin
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhanbo Shen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qingwen Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Kengna Fan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi Wang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
27
|
Marunaka Y. The Role of Ion-Transporting Proteins in Human Disease. Int J Mol Sci 2024; 25:1726. [PMID: 38339004 PMCID: PMC10855098 DOI: 10.3390/ijms25031726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This Special Issue focuses on the significance of ion-transporting proteins, such as ion channels and transporters, providing evidence for their significant contribution to bodily and cellular functions via the regulation of signal transduction and ionic environments [...].
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, 67 Kitatsuboi-cho, Nishinokyo, Nakagyo-ku, Kyoto 604-8472, Japan;
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
28
|
Ghosh P, Shokeen K, Mondal S, Kandasamy T, Kumar S, Ghosh SS, Iyer PK. Amyloid Targeting Red Emitting AIE Dots for Diagnostic and Therapeutic Application against Alzheimer's Disease. ACS Chem Neurosci 2024; 15:268-277. [PMID: 38170988 DOI: 10.1021/acschemneuro.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The emergence of neurodegenerative diseases is connected to several pathogenic factors, including metal ions, amyloidogenic proteins, and reactive oxygen species. Recent studies suggest that cytotoxicity is caused by the small, dynamic, and metastable nature of early stage oligomeric species. This work introduces a small molecule-based red-emitting probe with smart features such as increased reactivities against multiple targets, metal-free amyloid-β (Aβ), and metal-bound amyloid-β (Aβ), and most importantly, early stage oligomeric species which are associated with the most common and widespread type of dementia, Alzheimer's disease (AD). Theoretical analyses like molecular dynamics simulation and molecular docking were performed to confirm the reactivity of the molecule toward Aβ and found some excellent interactions between the molecule and the peptide. The in vitro and cellular studies demonstrated that this highly biocompatible molecule effectively reduces the structural damage to mitochondria while shielding cells from apoptosis, scavenges ROS (reactive oxygen species), and attenuates multifaceted amyloid toxicity.
Collapse
Affiliation(s)
- Priyam Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kamal Shokeen
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Subrata Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Love RWB. Aniracetam: An Evidence-Based Model for Preventing the Accumulation of Amyloid-β Plaques in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1235-1241. [PMID: 38552113 DOI: 10.3233/jad-231247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Alzheimer's disease is the leading cause of dementia in the world. It affects 6 million people in the United States and 50 million people worldwide. Alzheimer's disease is characterized by the accumulation of amyloid-β plaques (Aβ), an increase in tau protein neurofibrillary tangles, and a loss of synapses. Since the 1990s, removing and reducing Aβ has been the focus of Alzheimer's treatment and prevention research. The accumulation of Aβ can lead to oxidative stress, inflammation, neurotoxicity, and eventually apoptosis. These insults impair signaling systems in the brain, potentially leading to memory loss and cognitive decline. Aniracetam is a safe, effective, cognitive-enhancing drug that improves memory in both human and animal studies. Aniracetam may prevent the production and accumulation of Aβ by increasing α-secretase activity through two distinct pathways: 1) increasing brain derived neurotrophic factor expression and 2) positively modulating metabotropic glutamate receptors. This is the first paper to propose an evidence-based model for aniracetam reducing the accumulation and production of Aβ.
Collapse
Affiliation(s)
- Robert W B Love
- Research Department, Brain Fit For Life, LLC, Lewes, DE, USA
| |
Collapse
|
30
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
31
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
32
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
33
|
Jannat K, Balakrishnan R, Han JH, Yu YJ, Kim GW, Choi DK. The Neuropharmacological Evaluation of Seaweed: A Potential Therapeutic Source. Cells 2023; 12:2652. [PMID: 37998387 PMCID: PMC10670678 DOI: 10.3390/cells12222652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.
Collapse
Affiliation(s)
- Khoshnur Jannat
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Rengasamy Balakrishnan
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| | - Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ga-Won Kim
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| |
Collapse
|
34
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
35
|
Srivastava A, Johnson M, Renna HA, Sheehan KM, Ahmed S, Palaia T, Pinkhasov A, Gomolin IH, De Leon J, Reiss AB. Therapeutic Potential of P110 Peptide: New Insights into Treatment of Alzheimer's Disease. Life (Basel) 2023; 13:2156. [PMID: 38004296 PMCID: PMC10672680 DOI: 10.3390/life13112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-β accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-β generation and improving neuronal health by maintaining mitochondrial function in neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.S.); (M.J.); (H.A.R.); (K.M.S.); (S.A.); (T.P.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
36
|
Sudhakar S, Manohar A, Mani E. Liquid-Liquid Phase Separation (LLPS)-Driven Fibrilization of Amyloid-β Protein. ACS Chem Neurosci 2023; 14:3655-3664. [PMID: 37718544 DOI: 10.1021/acschemneuro.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Amyloid-β [Aβ(1-40)] aggregation into a fibrillar network is one of the major hallmarks of Alzheimer's disease (AD). Recently, a few studies reported that polyphosphate (polyP), an anionic biopolymer that participates in various cellular physiological processes in humans, induces fibrilization in many amyloidogenic proteins [ 2020 Alzheimer's Disease Facts and Figures; John Wiley and Sons Inc., 2020; Tanzi, R. E.; Bertram, L. Cell 2005, 120, 545-555; Selkoe, D. J. Proc. Natl. Acad. Sci. U.S.A. 1995, 275, 630-631; and Rambaran, R. N.; Serpell, L. C. Prion 2008, 2, 112-117]. However, the role of polyP in Aβ(1-40) fibrilization and the underlying mechanism are unclear. In this study, we report experimental investigations on the role of polyP in the fibrilization kinetics of Aβ(1-40). It is found that polyP exhibits a dual effect depending upon the pH value. At pH = 7 (neutral), polyP inhibits amyloid fibrilization in a dose-dependent manner similar to negatively charged nanoparticles. On the contrary, at pH = 3 (acidic), polyP accelerates amyloid fibrilization kinetics via liquid-liquid phase separation (LLPS), wherein the protein-rich droplets contain mature fibrils. In the parameter space spanned by concentrations of Aβ(1-40) and polyP, a phase diagram is constructed to demark the domain where LLPS is observed at pH = 3. Characterization of the protein aggregates, secondary structure content in the aggregates, and cell viability studies in the presence of aggregates are discussed at both pH values. This study reveals that anionic biopolymers can modulate amyloid fibrilization kinetics, linked to neurodegenerative diseases, depending upon their local concentrations and pH.
Collapse
Affiliation(s)
- Swathi Sudhakar
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anagha Manohar
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
37
|
Bayazit MB, Francois A, McGrail E, Accornero F, Stratton MS. mt-tRNAs in the polymerase gamma mutant heart. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:41. [PMID: 38235059 PMCID: PMC10793997 DOI: 10.20517/jca.2023.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Introduction Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice. Aim We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress. Methods and Results The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data. Conclusion We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.
Collapse
Affiliation(s)
- M. Bilal Bayazit
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley Francois
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Erin McGrail
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew S. Stratton
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Bhatti JS, Kaur S, Mishra J, Dibbanti H, Singh A, Reddy AP, Bhatti GK, Reddy PH. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166798. [PMID: 37392948 DOI: 10.1016/j.bbadis.2023.166798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid β (Aβ) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with Aβ and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with Aβ and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
39
|
Alves SS, Servilha-Menezes G, Rossi L, da Silva Junior RMP, Garcia-Cairasco N. Evidence of disturbed insulin signaling in animal models of Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105326. [PMID: 37479008 DOI: 10.1016/j.neubiorev.2023.105326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Since glucose reuptake by neurons is mostly independent of insulin, it has been an intriguing question whether insulin has or not any roles in the brain. Consequently, the identification of insulin receptors in the central nervous system has fueled investigations of insulin functions in the brain. It is also already known that insulin can influence glucose reuptake by neurons, mostly during activities that have the highest energy demand. The identification of high density of insulin receptors in the hippocampus also suggests that insulin may present important roles related to memory. In this context, studies have reported worse performance in cognitive tests among diabetic patients. In addition, alterations in the regulation of central insulin pathways have been observed in the brains of Alzheimer's disease (AD) patients. In fact, some authors have proposed AD as a third type of diabetes and recently, our group proposed insulin resistance as a common link between different AD hypotheses. Therefore, in the present narrative review, we intend to revise and gather the evidence of disturbed insulin signaling in experimental animal models of AD.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Leticia Rossi
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Rui Milton Patrício da Silva Junior
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil; Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil.
| |
Collapse
|
40
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
41
|
Husain KH, Sarhan SF, AlKhalifa HKAA, Buhasan A, Moin ASM, Butler AE. Dementia in Diabetes: The Role of Hypoglycemia. Int J Mol Sci 2023; 24:9846. [PMID: 37372995 DOI: 10.3390/ijms24129846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Hypoglycemia, a common consequence of diabetes treatment, is associated with severe morbidity and mortality and has become a major barrier to intensifying antidiabetic therapy. Severe hypoglycemia, defined as abnormally low blood glucose requiring the assistance of another person, is associated with seizures and comas, but even mild hypoglycemia can cause troubling symptoms such as anxiety, palpitations, and confusion. Dementia generally refers to the loss of memory, language, problem-solving, and other cognitive functions, which can interfere with daily life, and there is growing evidence that diabetes is associated with an increased risk of both vascular and non-vascular dementia. Neuroglycopenia resulting from a hypoglycemic episode in diabetic patients can lead to the degeneration of brain cells, with a resultant cognitive decline, leading to dementia. In light of new evidence, a deeper understating of the relationship between hypoglycemia and dementia can help to inform and guide preventative strategies. In this review, we discuss the epidemiology of dementia among patients with diabetes, and the emerging mechanisms thought to underlie the association between hypoglycemia and dementia. Furthermore, we discuss the risks of various pharmacological therapies, emerging therapies to combat hypoglycemia-induced dementia, as well as risk minimization strategies.
Collapse
Affiliation(s)
- Khaled Hameed Husain
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Saud Faisal Sarhan
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | | | - Asal Buhasan
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|
42
|
McGregor L, Soler-López M. Structural basis of bioenergetic protein complexes in Alzheimer's disease pathogenesis. Curr Opin Struct Biol 2023; 80:102573. [DOI: 10.1016/j.sbi.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
43
|
Chen W, Huang Q, Lazdon EK, Gomes A, Wong M, Stephens E, Royal TG, Frenkel D, Cai W, Kahn CR. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc Natl Acad Sci U S A 2023; 120:e2220684120. [PMID: 37186836 PMCID: PMC10214134 DOI: 10.1073/pnas.2220684120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aβ plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aβ uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aβ uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.
Collapse
Affiliation(s)
- Wenqiang Chen
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Qian Huang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Ekaterina Katie Lazdon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Antonio Gomes
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Marisa Wong
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Emily Stephens
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Tabitha Grace Royal
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Dan Frenkel
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - C. Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| |
Collapse
|
44
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
45
|
Schreiner TG, Schreiner OD, Adam M, Popescu BO. The Roles of the Amyloid Beta Monomers in Physiological and Pathological Conditions. Biomedicines 2023; 11:1411. [PMID: 37239082 PMCID: PMC10216198 DOI: 10.3390/biomedicines11051411] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Amyloid beta peptide is an important biomarker in Alzheimer's disease, with the amyloidogenic hypothesis as one of the central hypotheses trying to explain this type of dementia. Despite numerous studies, the etiology of Alzheimer's disease remains incompletely known, as the pathological accumulation of amyloid beta aggregates cannot fully explain the complex clinical picture of the disease. Or, for the development of effective therapies, it is mandatory to understand the roles of amyloid beta at the brain level, from its initial monomeric stage prior to aggregation in the form of senile plaques. In this sense, this review aims to bring new, clinically relevant data on a subject intensely debated in the literature in the last years. In the first part, the amyloidogenic cascade is reviewed and the possible subtypes of amyloid beta are differentiated. In the second part, the roles played by the amyloid beta monomers in physiological and pathological (neurodegenerative) conditions are illustrated based on the most relevant and recent studies published on this topic. Finally, considering the importance of amyloid beta monomers in the pathophysiology of Alzheimer's disease, new research directions with diagnostic and therapeutic impacts are suggested.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Medical Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Maricel Adam
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
46
|
Marunaka Y. Molecular Mechanisms of Obesity-Induced Development of Insulin Resistance and Promotion of Amyloid-β Accumulation: Dietary Therapy Using Weak Organic Acids via Improvement of Lowered Interstitial Fluid pH. Biomolecules 2023; 13:biom13050779. [PMID: 37238649 DOI: 10.3390/biom13050779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the etiologies of type 2 diabetes mellitus (T2DM) and has been suggested to contribute to the development of Alzheimer's disease by promoting amyloid-β accumulation. Various causes of insulin resistance have been suggested; however, mechanisms of insulin resistance development remain to be elucidated in many respects. Elucidating the mechanisms underlying the development of insulin resistance is one of the key factors in developing methods to prevent the onset of T2DM and Alzheimer's disease. It has been suggested that the body pH environment plays an important role in the control of cellular functions by regulating the action of hormones including insulin and the activity of enzymes and neurons, thereby maintaining homeostatic conditions of the body. This review introduces: (1) Mitochondrial dysfunction through oxidative stress caused by obesity-induced inflammation. (2) Decreased pH of interstitial fluid due to mitochondrial dysfunction. (3) Development of insulin resistance due to diminution of insulin affinity to its receptor caused by the lowered interstitial fluid pH. (4) Accelerated accumulation of amyloid-β due to elevated activities of β- and γ-secretases caused by the lowered interstitial fluid pH. (5) Diet therapies for improving insulin resistance with weak organic acids that act as bases in the body to raise the pH of lowered interstitial fluid and food factors that promote absorption of weak organic acids in the gut.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
47
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
48
|
Two polyphenols isolated from Corallodiscus flabellata B. L. Burtt ameliorate amyloid β-protein induced Alzheimer's disease neuronal injury by improving mitochondrial homeostasis. Behav Brain Res 2023; 440:114264. [PMID: 36535434 DOI: 10.1016/j.bbr.2022.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Corallodiscus flabellata B. L. Burtt (CF) is a Chinese folk herb with reported potential for the treatment of Alzheimer's disease (AD). 3,4-Dihydroxyphenylethanol-8-O-[4-O-trans-caffeoyl-β-D-apiofuranosyl-(1→3)-β-D-glucopyranosyl (1→6)][1]-β-D-glucopyranoside (SDC-1-8) and hydroxytyrosol (HT) are two polyphenolic compounds isolated from CF. The aim of this study was to investigate the protective effects of SDC-1-8 and HT on an Aβ25-35-induced AD model and to study the underlying mechanism. The AD mouse model was established using a brain injection of amyloid β-protein 25-35 (Aβ25-35, 200 μM), followed by continuous administration of SDC-1-8 and HT for 4 weeks, and found that they improved cognitive dysfunction; ameliorated neuronal damage and apoptosis; decreased oxidative stress, and mitochondrial fission protein levels; and increased mitochondrial fusion protein levels in AD mice. Moreover, SDC-1-8 and HT inhibited mitochondrial membrane depolarization, reduced intracellular stored Ca2+ levels, enhanced mitochondrial respiration, increased mitochondrial fusion, and decreased mitochondrial division in Aβ25-35-induced PC12 cells even in the presence of mdivi-1. Furthermore, molecular docking simulations showed that SDC-1-8 and HT interacted with dynamin-related protein 1 with higher affinity than mitofusin 1. Thus, it is summarized that SDC-1-8 and HT may have neuroprotective effects by balancing the abnormalities of mitochondrial fission and fusion, and SDC-1-8 and HT are the components providing the therapeutic basis of CF.
Collapse
|
49
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
50
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|