1
|
Zhang L, Wang S, Wang L. Pan‑cancer analysis of oncogene SFXN1 to identify its prognostic and immunological roles in lung adenocarcinoma. Oncol Rep 2025; 53:50. [PMID: 40052583 PMCID: PMC11923928 DOI: 10.3892/or.2025.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/14/2025] [Indexed: 03/22/2025] Open
Abstract
As cancer incidence and mortality rates continue to rise, the urgency for research in this field has increased globally. Sideroflexin 1 (SFXN1), a pivotal member of the SFXN protein family, serves a crucial role in transporting serine to mitochondria and participates in one‑carbon metabolism, thereby influencing cell proliferation and differentiation. While SFXN1 is linked to lung cancer and glioma, its role in other malignancies remains largely unexplored. Utilizing The Cancer Genome Atlas, Human Protein Atlas, Gene Expression Profiling Interactive Analysis and University of Alabama at Birmingham Cancer Data Analysis Portal databases, the present study investigated the expression patterns, prognostic implications and association with immune cell infiltration of SFXN1. The present findings revealed that SFXN1 was differentially expressed across various tumor types, and exhibited significant associations with clinicopathological features and patient prognosis. Through immune infiltration analysis, a significant correlation between SFXN1 and T cells, B cells and immune checkpoint genes was established in numerous tumor types. Notably, loss‑of‑function experiments demonstrated that silencing of SFXN1 decreased cell proliferation, migration and invasion, while simultaneously increasing apoptosis in lung adenocarcinoma cells. Collectively, these findings suggested that SFXN1 expression could potentially serve as a biomarker for tumor diagnosis and prognosis, also emerging as a novel therapeutic target in cancer immunotherapy. The present study highlights the critical role of SFXN1 in cancer biology and paves the way for future translational efforts aimed at leveraging its potential in clinical oncology.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Thoracic Surgery, Weifang Second People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
2
|
Huang H, Lian H, Liu W, Li B, Zhu R, Shao H. Sideroflexin family genes were dysregulated and associated with tumor progression in prostate cancers. Hum Genomics 2025; 19:10. [PMID: 39915876 PMCID: PMC11803981 DOI: 10.1186/s40246-024-00705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Sideroflexin (SFXN) family genes encode for a group of mitochondrial proteins involved in cellular processes such as iron homeostasis, amino acid metabolism, and energy production. Recent studies showed that they were aberrantly expressed in certain human cancers. However, there is a paucity of information about their expression in prostate cancer. In this study, we took a comprehensive approach to investigate their expression profiles in benign prostate tissue, prostate-derived cell lines, and prostate cancer tissues using multiple transcriptome datasets. Our results showed that SFXN1/3/4 genes were predominantly expressed in prostate tissue and cell lines. SFXN2/4 genes were significantly upregulated while the SFXN3 expression was significantly downregulated in malignant tissues compared to benign tissues. SFXN4 expression was identified as a diagnostic biomarker and prognostic factor for unfavorite survival outcomes. In advanced prostate cancers, SFXN2/4 expressions were positively correlated with the androgen receptor signaling activity but negatively correlated with the neuroendocrinal features. Further analysis discovered that SFXN5 expression was significantly elevated in neuroendocrinal prostate cancers. In conclusion, SFXN2/4 expressions are novel biomarkers in prostate cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Hua Huang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Huibo Lian
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Runzhi Zhu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China
| | - Haiyan Shao
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
3
|
Jin F, He L, Wang J, Zhang Y, Yang M. SFXN3 is a Prognostic Marker and Promotes the Growth of Acute Myeloid Leukemia. Cell Biochem Biophys 2024; 82:2195-2204. [PMID: 38877336 PMCID: PMC11445304 DOI: 10.1007/s12013-024-01326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with rapid progression and frequent mutations. Sideroflexin3 (SFXN3) has been shown to be involved in various neurodegenerative diseases. However, the role of SFXN3 in AML remains unclear. The level and prognostic value of SFXN3 were assessed in pan-cancer, especially AML, based on the data obtained from the TCGA database. The effect and mechanism of SFXN3 in AML were measured by fluorescence-activated cell sorting (FACS), qRT-PCR, western blotting in vitro and in vivo. The correlation between SFXN3 and the infiltration of immune cells in AML was assessed via cibersort and ssGSEA analyses. SFXN3 is expressed at higher levels in AML, and high SFXN3 level is associated with decreased overall survival rate (OSR) in AML. Next, knockdown of SFXN3 results in enhanced cell apoptosis and dropped cell proliferation. Then, knockdown of SFXN3 caused a reduction in the expression of CyclinD1 (CCND1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1). Finally, SFXN3 may related to the immunosuppressive state of AML. Increased SFXN3 expression is detected in AML, which indicates a poor prognosis and may link to immunosuppressive state of AML. In addition, SFXN3 can inhibit AML cells apoptosis and promote cell proliferation via enhancing CCND1 and NFKB1 levels.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Prognosis
- Cell Proliferation
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Animals
- Mice
- Cyclin D1/metabolism
- Cyclin D1/genetics
- Male
- Female
- RNA, Small Interfering/metabolism
- Survival Rate
Collapse
Affiliation(s)
- Fengbo Jin
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Limei He
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Jing Wang
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Yu Zhang
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Mingzhen Yang
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
- Anhui Public Health Clinical Center, Hefei, China.
| |
Collapse
|
4
|
Wojnicka J, Grywalska E, Hymos A, Mertowska P, Mertowski S, Charytanowicz M, Klatka M, Klatka J, Dolliver WR, Błażewicz A. The Relationship between Cancer Stage, Selected Immunological Parameters, Epstein-Barr Virus Infection, and Total Serum Content of Iron, Zinc, and Copper in Patients with Laryngeal Cancer. J Clin Med 2024; 13:511. [PMID: 38256645 PMCID: PMC10816330 DOI: 10.3390/jcm13020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: the purpose of the study was to assess the relationship between cancer stage, selected immunological parameters, Epstein-Barr virus (EBV) infection, and total serum content of iron, zinc, and copper in patients with laryngeal cancer (LC). (2) Methods: serum Fe, Zn, and Cu were measured in 40 LC patients and 20 controls. Immunophenotyping of peripheral blood lymphocytes was performed by flow cytometry using fluorescent antibodies against CD3, CD4, CD8, CD19, CD25, CD69, and PD-1. Tumor and lymph node lymphocytes were analyzed by flow cytometry. EBV DNA was quantified by real-time PCR, targeting the EBNA-1 gene. Associations between serum elements, immune markers, and cancer grade/stage were evaluated using ANOVA and appropriate nonparametric tests. (3) Results: levels of Fe, Cu, and Zn were lower, while Cu/Zn was statistically higher, in patients with LC than in the control group. Correlation analysis showed a statistically significant association between the levels of these elements and parameters of the TNM (Tumor, Node, Metastasis) staging system, immunophenotype, and the amount of EBV genetic material in patients with LC who survived for more than 5 years. (4) Conclusion: the results suggest that the total serum levels of the determined micronutrients may significantly affect the immunopathogenesis and progression of LC.
Collapse
Affiliation(s)
- Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Małgorzata Charytanowicz
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland;
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
| | - Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University, Gębali 1 St., 20-093 Lublin, Poland;
| | - Janusz Klatka
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland;
| | | | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| |
Collapse
|
5
|
Qi Y, Hu M, Wang Z, Shang W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem Pharmacol 2023; 215:115725. [PMID: 37524207 DOI: 10.1016/j.bcp.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The injury caused by ischemia and subsequent reperfusion (I/R) is inevitable during kidney transplantation and its current management remains unsatisfactory. Iron is considered to play a remarkable pathologic role in the initiation or progression of tissue damage induced by I/R, whereas the effects of iron-related therapy remain controversial owing to the complicated nature of iron's involvement in multiple biological processes. A significant portion of the cellular iron is located in the mitochondria, which exerts a central role in the development and progression of I/R injury. Recent studies of iron regulation associated with mitochondrial function represents a unique opportunity to improve our knowledge on the pathophysiology of I/R injury. However, the molecular mechanisms linking mitochondria to the iron homeostasis remain unclear. In this review, we provide a comprehensive analysis of the alterations to iron metabolism in I/R injury during kidney transplantation, analyze the current understanding of mitochondrial regulation of iron homeostasis and discussed its potential application in I/R injury. The elucidation of regulatory mechanisms regulating mitochondrial iron homeostasis will offer valuable insights into potential therapeutic targets for alleviating I/R injury with the ultimate aim of improving kidney graft outcomes, with potential implications that could also extend to acute kidney injury or other I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Bala CŞ. Fierul, feroptoza şi asocierea cu evoluţia tumorală şi potenţialul impact terapeutic. ONCOLOG-HEMATOLOG.RO 2023. [DOI: 10.26416/onhe.62.1.2023.7744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Xiao H, Bozi LHM, Sun Y, Riley CL, Philip VM, Chen M, Li J, Zhang T, Mills EL, Emont MP, Sun W, Reddy A, Garrity R, Long J, Becher T, Vitas LP, Laznik-Bogoslavski D, Ordonez M, Liu X, Chen X, Wang Y, Liu W, Tran N, Liu Y, Zhang Y, Cypess AM, White AP, He Y, Deng R, Schöder H, Paulo JA, Jedrychowski MP, Banks AS, Tseng YH, Cohen P, Tsai LT, Rosen ED, Klein S, Chondronikola M, McAllister FE, Van Bruggen N, Huttlin EL, Spiegelman BM, Churchill GA, Gygi SP, Chouchani ET. Architecture of the outbred brown fat proteome defines regulators of metabolic physiology. Cell 2022; 185:4654-4673.e28. [PMID: 36334589 PMCID: PMC10040263 DOI: 10.1016/j.cell.2022.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.
Collapse
Affiliation(s)
- Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher L Riley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mandy Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Wenfei Sun
- Department of Bioengineering, Stanford University, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiani Long
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tobias Becher
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Laura Potano Vitas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiong Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yun Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weihai Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yitong Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew P White
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yuchen He
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Deng
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Uszczynska-Ratajczak B, Sugunan S, Kwiatkowska M, Migdal M, Carbonell-Sala S, Sokol A, Winata CL, Chacinska A. Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish. Life Sci Alliance 2022; 6:6/1/e202201514. [PMID: 36283702 PMCID: PMC9595208 DOI: 10.26508/lsa.202201514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a -/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.
Collapse
Affiliation(s)
- Barbara Uszczynska-Ratajczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sreedevi Sugunan
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Monika Kwiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland,Centre of New Technologies, University of Warsaw, Warsaw, Poland,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Silvia Carbonell-Sala
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Sokol
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Chen Y, Qian J, Ding P, Wang W, Li X, Tang X, Tang C, Yang Y, Gu C. Elevated SFXN2 limits mitochondrial autophagy and increases iron-mediated energy production to promote multiple myeloma cell proliferation. Cell Death Dis 2022; 13:822. [PMID: 36163342 PMCID: PMC9513108 DOI: 10.1038/s41419-022-05272-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/23/2023]
Abstract
Human sideroflexin 2 (SFXN2) belongs to the SFXN protein family, which is a mitochondrial outer membrane protein involved in mitochondrial iron metabolism. Mitochondria are indispensable for cellular energy production and iron metabolism. However, it remains elusive how SFXN2 modulates mitochondrial homeostasis and cellular iron metabolism in multiple myeloma (MM). In this study, we first found that SFXN2 was significantly elevated and correlated to poor outcomes in MM patients from clinical datasets. SFXN2 overexpression promoted MM cell proliferation and suppressed starvation-induced autophagy/mitophagy, while SFXN2 knockdown aggravated mitochondria damage and autophagic processes in ARP1 and H929 MM cell lines. Furthermore, inhibition of SFXN2 exerted effectively anti-myeloma activity in vivo by using myeloma xenograft model. Mechanism studies indicated that heme oxygenase 1 (HO1) with anti-oxidant function contributed to the process of autophagy suppression and cellular proliferation mediated by SFXN2. Our study revealed the critical role of SFXN2 in regulating mitochondrial bioenergetics, mitophagy, cellular iron metabolism, and redox homeostasis in interconnected and intricate way. Collectively, these findings not only provide insights into the metabolic reprogramming of tumor cells, but also highlight the therapeutic potential of SFXN2 in combination with iron metabolism as target for prognosis and treatment in MM patients.
Collapse
Affiliation(s)
- Ying Chen
- grid.410745.30000 0004 1765 1045Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China ,grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wang Wang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinying Li
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhu Tang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Tang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- grid.410745.30000 0004 1765 1045Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China ,grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
A High-Throughput Search for SFXN1 Physical Partners Led to the Identification of ATAD3, HSD10 and TIM50. BIOLOGY 2022; 11:biology11091298. [PMID: 36138777 PMCID: PMC9495560 DOI: 10.3390/biology11091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Mitochondria are central players in cell fate and cell death. Indeed, mitochondrial dysfunction has been observed in many diseases, including neurodegenerative diseases. The activity of these organelles relies on numerous mitochondrial transporters, among which the sideroflexins have received little attention to date despite their emerging importance in human health. To better understand the cellular functions of these transporters and their associations with diseases, we herein investigated the molecular partners of one human sideroflexin, SFXN1. Several proteins capable of interacting with SFXN1 were identified, including ATAD3 and HSD10, two mitochondrial proteins linked to neuronal disorders. Abstract Sideroflexins (SFXN, SLC56) are a family of evolutionarily conserved mitochondrial carriers potentially involved in iron homeostasis. One member of the SFXN family is SFXN1, recently identified as a human mitochondrial serine transporter. However, little is known about the SFXN1 interactome, necessitating a high-throughput search to better characterize SFXN1 mitochondrial functions. Via co-immunoprecipitation followed by shotgun mass spectrometry (coIP-MS), we identified 96 putative SFXN1 interactors in the MCF7 human cell line. Our in silico analysis of the SFXN1 interactome highlights biological processes linked to mitochondrial organization, electron transport chains and transmembrane transport. Among the potential physical partners, ATAD3A and 17β-HSD10, two proteins associated with neurological disorders, were confirmed using different human cell lines. Nevertheless, further work will be needed to investigate the significance of these interactions.
Collapse
|
11
|
Prospective role and immunotherapeutic targets of sideroflexin protein family in lung adenocarcinoma: evidence from bioinformatics validation. Funct Integr Genomics 2022; 22:1057-1072. [DOI: 10.1007/s10142-022-00883-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
|
12
|
Medlock AE, Hixon JC, Bhuiyan T, Cobine PA. Prime Real Estate: Metals, Cofactors and MICOS. Front Cell Dev Biol 2022; 10:892325. [PMID: 35669513 PMCID: PMC9163361 DOI: 10.3389/fcell.2022.892325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metals are key elements for the survival and normal development of humans but can also be toxic to cells when mishandled. In fact, even mild disruption of metal homeostasis causes a wide array of disorders. Many of the metals essential to normal physiology are required in mitochondria for enzymatic activities and for the formation of essential cofactors. Copper is required as a cofactor in the terminal electron transport chain complex cytochrome c oxidase, iron is required for the for the formation of iron-sulfur (Fe-S) clusters and heme, manganese is required for the prevention of oxidative stress production, and these are only a few examples of the critical roles that mitochondrial metals play. Even though the targets of these metals are known, we are still identifying transporters, investigating the roles of known transporters, and defining regulators of the transport process. Mitochondria are dynamic organelles whose content, structure and localization within the cell vary in different tissues and organisms. Our knowledge of the impact that alterations in mitochondrial physiology have on metal content and utilization in these organelles is very limited. The rates of fission and fusion, the ultrastructure of the organelle, and rates of mitophagy can all affect metal homeostasis and cofactor assembly. This review will focus of the emerging areas of overlap between metal homeostasis, cofactor assembly and the mitochondrial contact site and cristae organizing system (MICOS) that mediates multiple aspects of mitochondrial physiology. Importantly the MICOS complexes may allow for localization and organization of complexes not only involved in cristae formation and contact between the inner and outer mitochondrial membranes but also acts as hub for metal-related proteins to work in concert in cofactor assembly and homeostasis.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| | - J. Catrice Hixon
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- *Correspondence: Paul A. Cobine,
| |
Collapse
|
13
|
Li P, Yang B, Xiu B, Chi Y, Xue J, Wu J. Development and Validation of a Robust Ferroptosis-Related Gene Panel for Breast Cancer Disease-Specific Survival. Front Cell Dev Biol 2021; 9:709180. [PMID: 34900981 PMCID: PMC8655913 DOI: 10.3389/fcell.2021.709180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background: New biomarker combinations have been increasingly developed to improve the precision of current diagnostic and therapeutic modalities. Recently, researchers have found that tumor cells are more vulnerable to ferroptosis. Furthermore, ferroptosis-related genes (FRG) are promising therapeutic targets in breast cancer patients. Therefore, this study aimed to identify FRG that could predict disease-specific survival (DSS) in breast cancer patients. Methods: Gene expression matrix and clinical data were downloaded from public databases. We included 960, 1,900, and 234 patients from the TCGA, METABRIC, and GSE3494 cohorts, respectively. Data for FRG were downloaded from the FerrDb website. Differential expression of FRG was analyzed by comparing the tumors with adjacent normal tissues. Univariate Cox analysis of DSS was performed to identify prognostic FRG. The TCGA-BRCA cohort was used to generate a nine-gene panel with the LASSO cox regression. The METABRIC and GSE3494 cohorts were used to validate the panel. The panel's median cut-off value was used to divide the patients into high- or low-risk subgroups. Analyses of immune microenvironment, functional pathways, and clinical correlation were conducted via GO and KEGG analyses to determine the differences between the two subgroups. Results: The DSS of the low-risk subgroup was longer than that of the high-risk subgroup. The panel's predictive ability was confirmed by ROC curves (TCGA cohort AUC values were 0.806, 0.695, and 0.669 for 2, 3, and 5 years respectively, and the METABRIC cohort AUC values were 0.706, 0.734, and 0.7, respectively for the same periods). The panel was an independent DSS prognostic indicator in the Cox regression analyses. (TCGA cohort: HR = 3.51, 95% CI = 1.792-6.875, p < 0.001; METABRIC cohort: HR = 1.76, 95% CI = 1.283-2.413, p < 0.001). Immune-related pathways were enriched in the high-risk subgroup. The two subgroups that were stratified by the nine-gene panel were also associated with histology type, tumor grade, TNM stage, and Her2-positive and TNBC subtypes. The patients in the high-risk subgroup, whose CTLA4 and PD-1 statuses were both positive or negative, demonstrated a substantial clinical benefit from combination therapy with anti-CTLA4 and anti-PD-1. Conclusion: The new gene panel consisting of nine FRG may be used to assess the prognosis and immune status of patients with breast cancer. A precise therapeutic approach can also be possible with risk stratification.
Collapse
Affiliation(s)
- Pei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Benlong Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingyan Xue
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Shanghai, China
| |
Collapse
|
14
|
Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W, Zheng L, Li X. The Role of Iron in Cancer Progression. Front Oncol 2021; 11:778492. [PMID: 34858857 PMCID: PMC8631356 DOI: 10.3389/fonc.2021.778492] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liwen Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenhui Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|