1
|
Aldakheel R, Gondal M, Almessiere M, Nasr M, Rehan I, Adel F. Rapid qualitative and quantitative vital nutrient contents in high-altitude cultivated folklore herbal medicinal Costus roots using calibration-free LIBS. ARAB J CHEM 2024; 17:105941. [DOI: 10.1016/j.arabjc.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Bravo M, Simón J, González-Recio I, Martinez-Cruz LA, Goikoetxea-Usandizaga N, Martínez-Chantar ML. Magnesium and Liver Metabolism Through the Lifespan. Adv Nutr 2023; 14:739-751. [PMID: 37207838 PMCID: PMC10334155 DOI: 10.1016/j.advnut.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Within the organism, the liver is the main organ responsible for metabolic homeostasis and xenobiotic transformation. To maintain an adequate liver weight-to-bodyweight ratio, this organ has an extraordinary regenerative capacity and is able to respond to an acute insult or partial hepatectomy. Maintenance of hepatic homeostasis is crucial for the proper functioning of the liver, and in this context, adequate nutrition with macro- and micronutrient intake is mandatory. Among all known macro-minerals, magnesium has a key role in energy metabolism and in metabolic and signaling pathways that maintain liver function and physiology throughout its life span. In the present review, the cation is reported as a potential key molecule during embryogenesis, liver regeneration, and aging. The exact role of the cation during liver formation and regeneration is not fully understood due to its unclear role in the activation and inhibition of those processes, and further research in a developmental context is needed. As individuals age, they may develop hypomagnesemia, a condition that aggravates the characteristic alterations. Additionally, risk of developing liver pathologies increases with age, and hypomagnesemia may be a contributing factor. Therefore, magnesium loss must be prevented by adequate intake of magnesium-rich foods such as seeds, nuts, spinach, or rice to prevent age-related hepatic alterations and contribute to the maintenance of hepatic homeostasis. Since magnesium-rich sources include a variety of foods, a varied and balanced diet can meet both macronutrient and micronutrient needs.
Collapse
Affiliation(s)
- Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Luis Alfonso Martinez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio (Bizkaia), Spain; Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Bizkaia, Spain.
| |
Collapse
|
4
|
Guan X, Shen S, Liu J, Song H, Chang J, Mao X, Song J, Zhang L, Liu C. Protective effecs of baicalin magnesium on non-alcoholic steatohepatitis rats are based on inhibiting NLRP3/Caspase-1/IL-1β signaling pathway. BMC Complement Med Ther 2023; 23:72. [PMID: 36879310 PMCID: PMC9987046 DOI: 10.1186/s12906-023-03903-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Baicalin magnesium is a water-soluble compound isolated from the aqueous solution by Scutellaria baicalensis Georgi. Preliminary experiments have demonstrated that baicalin magnesium can exert protective effects against acute liver injury in rats induced by carbon tetrachloride or lipopolysaccharide combined with d-galactose by regulating lipid peroxidation and oxidative stress. The aim of this study was to investigate the protective effect of baicalin magnesium on non-alcoholic steatohepatitis (NASH) in rats and to elucidate the underlying mechanisms. NASH was induced through a high-fat diet (HFD) for 8 weeks, and Sprague-Dawley rats were intravenously injected with baicalin magnesium, baicalin, and magnesium sulfate for 2 weeks, respectively. Serum was obtained for biochemical analyses and the determination of oxidative stress indicators. Liver tissues were collected for use in liver index assessment, histopathological examination, inflammatory factor analysis, and protein and gene expression analysis. The results revealed that baicalin magnesium markedly improved HFD-induced lipid deposition, inflammatory response, oxidative stress, and histopathological impairments. And baicalin magnesium may exert a protective effect on NASH rats by inhibiting the NLR family pyrin domain involving the 3 (NLRP3)/caspase-1/interleukin (IL)-1β inflammatory pathway. Additionally, the effect of baicalin magnesium was remarkably superior to that of equimolar baicalin and magnesium sulfate in regard to ameliorating NASH symptoms. In conclusion, the findings suggested that baicalin magnesium may represent a potential drug for the treatment of NASH.
Collapse
Affiliation(s)
- Xiulu Guan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Shiyuan Shen
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Jinxia Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Hongru Song
- Heibei North University, Zhangjiakou, 075000, China
| | - Jinhua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Xiaoxia Mao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Jingyu Song
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China.
| | - Cuizhe Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China.
| |
Collapse
|
6
|
Fengler VH, Macheiner T, Goessler W, Ratzer M, Haybaeck J, Sargsyan K. Hepatic Response of Magnesium-Restricted Wild Type Mice. Metabolites 2021; 11:metabo11110762. [PMID: 34822420 PMCID: PMC8625093 DOI: 10.3390/metabo11110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Magnesium-deficiency is implicated in many metabolic disorders, e.g., type 2 diabetes and metabolic syndrome, representing risk factors for non-alcoholic fatty liver disease (NAFLD). This study aims to investigate the contribution of magnesium-restriction to the development of NAFLD. Magnesium-deficiency was induced in C57BL/6 mice by feeding a magnesium-deficient-diet. Metabolic markers as well as markers of inflammation and liver function were assessed. Furthermore, liver tissue was examined histopathologically and compared with specimens from high-fat-diet fed and control mice. Finally, the hepatic inflammatory response was quantified by determining hepatic IL-6, TNFα, and MCP-1. Magnesium-restriction resulted in at least a 2-fold significant reduction of serum magnesium levels compared to the high-fat-diet fed and control mice, whereas the hepatic magnesium content was decreased due to high-fat-diet feeding. No changes in metabolic markers in magnesium-restricted mice were observed, while the cholesterol content was elevated in high-fat-diet fed mice. Magnesium-restricted mice additionally featured inflammation and enlarged hepatocytes in liver histology. Furthermore, magnesium-restricted and high-fat-diet fed mice exhibited elevated hepatic TNFα levels compared to control mice. Accordingly, our data suggest that magnesium is involved in hepatic inflammatory processes and hepatocyte enlargement, key histological features of human NAFLD, and may therefore contribute to development and progression of the disease.
Collapse
Affiliation(s)
- Vera H. Fengler
- Biobank Graz, Medical University of Graz, 8036 Graz, Austria;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Tanja Macheiner
- International Biobank and Education, Medical University of Graz, 8036 Graz, Austria;
| | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria;
| | - Maria Ratzer
- Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria;
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Karine Sargsyan
- International Biobank and Education, Medical University of Graz, 8036 Graz, Austria;
- Correspondence: ; Tel.: +43-316-385-72718
| |
Collapse
|