1
|
Kim HS, Lee GR, Kim EY. Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients. Biomedicines 2024; 12:2701. [PMID: 39767608 PMCID: PMC11673740 DOI: 10.3390/biomedicines12122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Endotoxin, a component of lipopolysaccharide (LPS) from bacteria, disrupts the immune system, potentially leading to multiorgan failure. Unlike previous studies, we enrolled patients with mild clinical conditions after major abdominal surgery and assessed the predictive value of endotoxin activity (EA) levels for acute complications which occur within 7 days postoperatively. Also, the differential diagnostic value of EA was assessed in a subgroup of patients with abnormal liver function during the immediate postoperative period. Methods: Patients admitted to the surgical ICU of our institution following elective abdominal surgery were enrolled. Participants were classified into low/high postoperative EA groups based on EA cutoff values for predicting complications. Additionally, participants were categorized based on liver function assessed at ICU admission using total bilirubin (TB) levels. Abnormal liver function was defined as a TB level > 1.2 mg/dL. Results: 86 patients were analyzed. The EA cutoff for postoperative complications was 0.485, with 49 patients (57%) categorized in the low EA group (EA levels < 0.485) and 37 patients (43%) in the high EA group (EA levels ≥ 0.485). The high EA group experienced statistically worse outcomes, including longer ICU stays and higher mortality rates. Logistic regression analysis confirmed that EA levels and SOFA scores were significant predictors of postoperative complications. For patients with elevated TB, the EA cutoff value for postoperative complications was 0.515, which is higher than those obtained for the total patient cohort. Conclusions: EA level is a viable surveillance tool for detecting postoperative complications in the acute period among ICU patients undergoing major abdominal surgery, and must be interpreted carefully considering the patient's liver function.
Collapse
Affiliation(s)
| | | | - Eun Young Kim
- Division of Trauma and Surgical Critical Care, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.S.K.)
| |
Collapse
|
2
|
Jiang Y, Song Y, Zeng Q, Jiang B. Mesenchymal Stem Cells and Their Extracellular Vesicles Are a Promising Alternative to Antibiotics for Treating Sepsis. Bioengineering (Basel) 2024; 11:1160. [PMID: 39593820 PMCID: PMC11591657 DOI: 10.3390/bioengineering11111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Sepsis is a life-threatening disease caused by the overwhelming response to pathogen infections. Currently, treatment options for sepsis are limited to broad-spectrum antibiotics and supportive care. However, the growing resistance of pathogens to common antibiotics complicates treatment efforts. Excessive immune response (i.e., cytokine storm) can persist even after the infection is cleared. This overactive inflammatory response can severely damage multiple organ systems. Given these challenges, managing the excessive immune response is critical in controlling sepsis progression. Therefore, Mesenchymal stem cells (MSCs), with their immunomodulatory and antibacterial properties, have emerged as a promising option for adjunctive therapy in treating sepsis. Moreover, MSCs exhibit a favorable safety profile, as they are eventually eliminated by the host's immune system within several months post-administration, resulting in minimal side effects and have not been linked to common antibiotic therapy drawbacks (i.e., antibiotic resistance). This review explores the potential of MSCs as a personalized therapy for sepsis treatment, clarifying their mechanisms of action and providing up-to-date technological advancements to enhance their protective efficacy for patients suffering from sepsis and its consequences.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Yunjuan Song
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Bin Jiang
- R&D Division, Eureka Biotech Inc., Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Jang JH, Choi E, Kim T, Yeo HJ, Jeon D, Kim YS, Cho WH. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int J Mol Sci 2024; 25:7396. [PMID: 39000503 PMCID: PMC11242529 DOI: 10.3390/ijms25137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis poses a significant threat to human health due to its high morbidity and mortality rates worldwide. Traditional diagnostic methods for identifying sepsis or its causative organisms are time-consuming and contribute to a high mortality rate. Biomarkers have been developed to overcome these limitations and are currently used for sepsis diagnosis, prognosis prediction, and treatment response assessment. Over the past few decades, more than 250 biomarkers have been identified, a few of which have been used in clinical decision-making. Consistent with the limitations of diagnosing sepsis, there is currently no specific treatment for sepsis. Currently, the general treatment for sepsis is conservative and includes timely antibiotic use and hemodynamic support. When planning sepsis-specific treatment, it is important to select the most suitable patient, considering the heterogeneous nature of sepsis. This comprehensive review summarizes current and evolving biomarkers and therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Jin Ho Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eunjeong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Taehwa Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Doosoo Jeon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Seong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Zhang D, Wang C, Li Q, Zhu Y, Zou H, Li G, Zhan L. Predictive Value of Multiple Scoring Systems in the Prognosis of Septic Patients with Different Infection Sites: Analysis of the Medical Information Mart for the Intensive Care IV Database. Biomedicines 2024; 12:1415. [PMID: 39061989 PMCID: PMC11274210 DOI: 10.3390/biomedicines12071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
The heterogeneity nature of sepsis is significantly impacted by the site of infection. This study aims to explore the predictive value of multiple scoring systems in assessing the prognosis of septic patients across different infection sites. Data for this retrospective cohort study were extracted from the Medical Information Mart for Intensive Care IV database (MIMIC-IV) (v2.2). Adult patients meeting the criteria for sepsis 3.0 and admitted to the intensive care unit (ICU) were enrolled. Infection sites included were pneumonia, urinary tract infection (UTI), cellulitis, abdominal infection, and bacteremia. The primary outcome assessed was 28-day mortality. The sequential Organ Failure Assessment (SOFA) score, Oxford Acute Severity of Illness Score (OASIS), and Logistic Organ Dysfunction System (LODS) score were compared. Binomial logistic regression analysis was conducted to evaluate the association between these variables and mortality. Additionally, differences in the area under the curve (AUC) of receiver operating characteristic (ROC) among the scoring systems were analyzed. A total of 4721 patients were included in the analysis. The average 28-day mortality rate was 9.4%. Significant differences were observed in LODS, OASIS, and SOFA scores between the 28-day survival and non-survival groups across different infection sites (p < 0.01). In the pneumonia group and abdominal infection group, both the LODS and OASIS scoring systems emerged as independent risk factors for mortality in septic patients (odds ratio [OR]: 1.165, 95% confidence interval [CI]: 1.109-1.224, p < 0.001; OR: 1.047, 95% CI: 1.028-1.065, p < 0.001) (OR: 1.200, 95% CI: 1.091-1.319, p < 0.001; OR: 1.060, 95% CI: 1.025-1.095, p < 0.001). For patients with UTI, the LODS, OASIS, and SOFA scoring systems were identified as independent risk factors for mortality (OR: 1.142, 95% CI: 1.068-1.220, p < 0.001; OR: 1.062, 95% CI: 1.037-1.087, p < 0.001; OR: 1.146, 95% CI: 1.046-1.255, p = 0.004), with the AUC of LODS score and OASIS significantly higher than that of the SOFA score (p = 0.006). Among patients with cellulitis, the OASIS and SOFA scoring systems were identified as independent risk factors for mortality (OR: 1.055, 95% CI: 1.007-1.106, p = 0.025; OR: 1.187, 95% CI: 1.005-1.403, p = 0.044), with no significant difference in prognosis prediction observed (p = 0.243). In the bacteremia group, the LODS scoring system was identified as an independent risk factor for mortality (OR: 1.165, 95% CI: 1.109-1.224, p < 0.001). The findings suggest that LODS scores offer better prognostic accuracy for predicting the mortality risk in septic patients with pneumonia, abdominal infections, bacteremia, and UTI compared to SOFA scores.
Collapse
Affiliation(s)
- Di Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (C.W.); (Y.Z.); (H.Z.)
| | - Changyong Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (C.W.); (Y.Z.); (H.Z.)
| | - Qianfeng Li
- Department of Neurosurgery, Wuhan No. 1 Hospital, Wuhan 430022, China;
| | - Yi Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (C.W.); (Y.Z.); (H.Z.)
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (C.W.); (Y.Z.); (H.Z.)
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (C.W.); (Y.Z.); (H.Z.)
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (C.W.); (Y.Z.); (H.Z.)
| |
Collapse
|
5
|
Theobald V, Schmitt FCF, Middel CS, Gaissmaier L, Brenner T, Weigand MA. Triggering receptor expressed on myeloid cells-1 in sepsis, and current insights into clinical studies. Crit Care 2024; 28:17. [PMID: 38191420 PMCID: PMC10775509 DOI: 10.1186/s13054-024-04798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition. Since 2001, when the first blockade of TREM-1 in sepsis was performed, many potential TREM-1 inhibitors have been established in animal models. However, only one of them, nangibotide, has entered clinical trials, which have yielded promising data for future treatment of sepsis, septic shock, and other inflammatory disease such as COVID-19. This review discusses the TREM-1 pathway and important ligands, and highlights the development of novel inhibitors as well as their clinical potential for targeted treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Vivienne Theobald
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Felix Carl Fabian Schmitt
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Chiara Simone Middel
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Lena Gaissmaier
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Chen G, Zhang W, Wang C, Chen M, Hu Y, Wang Z. Screening of four lysosome-related genes in sepsis based on RNA sequencing technology. BMC Immunol 2023; 24:50. [PMID: 38057716 PMCID: PMC10699041 DOI: 10.1186/s12865-023-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Screening of lysosome-related genes in sepsis patients to provide direction for lysosome-targeted therapy. METHODS Peripheral blood samples were obtained from 22 patients diagnosed with sepsis and 10 normal controls for the purpose of RNA sequencing and subsequent analysis of differential gene expression. Concurrently, lysosome-related genes were acquired from the Gene Ontology database. The intersecting genes between the differential genes and lysosome-related genes were then subjected to PPI, GO and KEGG analyses. Core genes were identified through survival analysis, and their expression trends in different groups were determined using meta-analysis. Single-cell RNA sequencing was used to clarify the cellular localization of core genes. RESULTS The intersection of 1328 sepsis-differential genes with 878 lysosome-related genes yielded 76 genes. PPI analysis showed that intersecting genes were mainly involved in Cellular process, Response to stimulus, Immune system process, Signal transduction, Lysosome. GO and KEGG analysis showed that intersecting genes were mainly involved in leukocyte mediated immunity, cell activation involved in immune response, lytic vacuole, lysosome. Survival analysis screened four genes positively correlated with sepsis prognosis, namely GNLY, GZMB, PRF1 and RASGRP1. The meta-analysis revealed that the expression levels of these four genes were significantly higher in the normal control group compared to the sepsis group, which aligns with the findings from RNA sequencing data. Furthermore, single-cell RNA sequencing demonstrated that T cells and NK cells exhibited high expression levels of GNLY, GZMB, PRF1, and RASGRP1. CONCLUSION GNLY, GZMB, PRF1, and RASGRP1, which are lysosome-related genes, are closely linked to the prognosis of sepsis and could potentially serve as novel research targets for sepsis, offering valuable insights for the development of lysosome-targeted therapy. The clinical trial registration number is ChiCTR1900021261, and the registration date is February 4, 2019.
Collapse
Affiliation(s)
- Guihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Zhang
- Department of Endocrinology and Metabolism, The Traditional Chinese Medicine Hospital of Luzhou City, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Kobritz M, Nofi C, Sfakianos M, Coppa G, Aziz M, Wang P. Targeting sting to reduce sepsis-induced acute intestinal injury. Surgery 2023; 174:1071-1077. [PMID: 37517896 PMCID: PMC10529857 DOI: 10.1016/j.surg.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Sepsis is a dysregulated host response to infection syndrome leading to life-threatening organ dysfunction. Sepsis-induced intestinal dysfunction is a key element in the progression to multisystem organ failure. The stimulator of interferon genes is an intracellular protein implicated in intestinal injury in sepsis. H151, a small molecule inhibitor of stimulator of interferon genes, has not yet been studied as a potential therapeutic in sepsis. We hypothesize that H151 therapeutically reduces sepsis-induced acute intestinal injury. METHODS Male mice underwent cecal ligation and puncture and were treated with intraperitoneal H151 (10 mg/kg body weight) or vehicle. Intestines and serum were collected for analysis 20 hours after cecal ligation and puncture. Oral gavage of mice with FITC-dextran was performed 15 hours after cecal ligation and puncture. Five hours after gavage, serum was collected, and intestinal permeability was assessed. Mice were monitored for 10 days after cecal ligation and puncture to assess survival. RESULTS Zonula occludens 1 tight junctional protein expression was reduced after cecal ligation and puncture and recovered with H151 treatment. This was associated with a 62.3% reduction in intestinal permeability as assessed by fluorimetry. After cecal ligation and puncture, treatment with H151 was associated with a 58.7% reduction in intestinal histopathologic injury (P < .05) and a 56.6% reduction in intestinal apoptosis (P < .05). Intestinal myeloperoxidase activity was decreased by 70.8% after H151 treatment (P < .05). Finally, H151 improved 10-day survival from 33% to 80% after cecal ligation and puncture (P = .011). CONCLUSION H151, a novel stimulator of interferon genes inhibitor, reduces intestinal injury, inflammation, and permeability when administered as a treatment for cecal ligation and puncture-induced sepsis. Thus, targeting stimulator of interferon genes shows promise as a therapeutic strategy to ameliorate sepsis-induced acute intestinal injury.
Collapse
Affiliation(s)
- Molly Kobritz
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Colleen Nofi
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Maria Sfakianos
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Gene Coppa
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Monowar Aziz
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| |
Collapse
|
8
|
Abu-Khudir R, Hafsa N, Badr BE. Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning. Diagnostics (Basel) 2023; 13:3091. [PMID: 37835833 PMCID: PMC10572229 DOI: 10.3390/diagnostics13193091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer (PC) has one of the lowest survival rates among all major types of cancer. Consequently, it is one of the leading causes of mortality worldwide. Serum biomarkers historically correlate well with the early prognosis of post-surgical complications of PC. However, attempts to identify an effective biomarker panel for the successful prognosis of PC were almost non-existent in the current literature. The current study investigated the roles of various serum biomarkers including carbohydrate antigen 19-9 (CA19-9), chemokine (C-X-C motif) ligand 8 (CXCL-8), procalcitonin (PCT), and other relevant clinical data for identifying PC progression, classified into sepsis, recurrence, and other post-surgical complications, among PC patients. The most relevant biochemical and clinical markers for PC prognosis were identified using a random-forest-powered feature elimination method. Using this informative biomarker panel, the selected machine-learning (ML) classification models demonstrated highly accurate results for classifying PC patients into three complication groups on independent test data. The superiority of the combined biomarker panel (Max AUC-ROC = 100%) was further established over using CA19-9 features exclusively (Max AUC-ROC = 75%) for the task of classifying PC progression. This novel study demonstrates the effectiveness of the combined biomarker panel in successfully diagnosing PC progression and other relevant complications among Egyptian PC survivors.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, P.O. Box 380, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Noor Hafsa
- Computer Science Department, College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Badr E. Badr
- Egyptian Ministry of Labor, Training and Research Department, Tanta 31512, Egypt;
- Botany Department, Microbiology Unit, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
9
|
Siskind S, Brenner M, Wang P. TREM-1 Modulation Strategies for Sepsis. Front Immunol 2022; 13:907387. [PMID: 35784361 PMCID: PMC9240770 DOI: 10.3389/fimmu.2022.907387] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 12/28/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor, which can be upregulated in inflammatory diseases as an amplifier of immune responses. Once activated, TREM-1 induces the production and release of pro-inflammatory cytokines and chemokines, in addition to increasing its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). This amplification of the inflammatory response by TREM-1 has now been considered as a critical contributor to the dysregulated immune responses in sepsis. Studies have shown that in septic patients there is an elevated expression of TREM-1 on immune cells and increased circulating levels of sTREM-1, associated with increased mortality. As a result, a considerable effort has been made towards identifying endogenous ligands of TREM-1 and developing TREM-1 inhibitory peptides to attenuate the exacerbated inflammatory response in sepsis. TREM-1 modulation has proven a promising strategy for the development of therapeutic agents to treat sepsis. Therefore, this review encompasses the ligands investigated as activators of TREM-1 thus far and highlights the development and efficacy of novel inhibitors for the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Sara Siskind
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| |
Collapse
|
10
|
Bi X, Yan X, Jiang B, Liang J, Zhou J, Lu S, Liu J, Luo L, Yin Z. Indoprofen exerts a potent therapeutic effect against sepsis by alleviating high mobility group box 1-mediated inflammatory responses. Toxicol Appl Pharmacol 2021; 433:115778. [PMID: 34755645 DOI: 10.1016/j.taap.2021.115778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023]
Abstract
Indoprofen is a non-steroidal anti-inflammatory drug, and has provided insights into treatment of spinal muscular atrophies; however, the treatment effect of indoprofen on sepsis and the precise underlying mechanism remain to be elucidated. This study was carried out to examine the inhibitory effect of indoprofen on high mobility group box 1 (HMGB1)-mediated inflammatory responses in vivo and in vitro. Intraperitoneal injection of indoprofen (20 or 40 mg/kg) at 8 h post-sepsis markedly improved the survival of BALB/c mice and ameliorated multiple-organ injury by blocking the inflammatory responses. In addition, indoprofen partially reduced the HMGB1 level in the serum and in the lung, as well as ameliorated pulmonary edema. Mechanistically, indoprofen potently inhibited the release of HMGB1 following stimulation by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C), and suppressed recombinant human HMGB1(rhHMGB1)-induced inflammatory responses. It was also found that indoprofen has both cyclooxygenase 2-dependent and -independent inhibitory effects on the proinflammatory effect of HMGB1 in THP-1 cells. Further, the drug reduced rhHMGB1-induced cell surface levels of toll-like receptor 2, toll-like receptor 4, and receptor of advanced glycation end-products in a concentration-dependent manner. Collectively, these data demonstrated that the anti-inflammatory effect of indoprofen in sepsis was associated with HMGB1-mediated inflammatory responses, thus offering a favorable mechanistic basis to support the therapeutic potential of indoprofen for the treatment of lethal sepsis or other inflammatory diseases.
Collapse
Affiliation(s)
- Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Baolin Jiang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jie Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
11
|
Öztürk Birge A, Karabag Aydin A, Köroğlu Çamdeviren E. Intensive care nurses' awareness of identification of early sepsis findings. J Clin Nurs 2021; 31:2886-2899. [PMID: 34729839 DOI: 10.1111/jocn.16116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
AIM To determine intensive care nurses' awareness of identification of early sepsis findings. BACKGROUND The incidence of sepsis is increasing in intensive care units, and if not identified early, it increases morbidity, mortality and cost of care. Intervention within one hour after the diagnosis of sepsis increases survival. Nurses' ability to identify early findings of sepsis affects the time of diagnosis of sepsis. DESIGN The study used a cross-sectional design. METHODS The sample of the study consisted of 544 nurses working in adult intensive care units of hospitals in Turkey. The study data were collected online between 11 January-8 April 2021 using the snowball method. Data were statically analysed. All procedures of the study adhered to the STROBE guidelines. RESULTS The nurses who had been working for 11 years or more, had worked with a patient diagnosed with sepsis in the last month and used a measurement tool in the diagnosis thought that it was significantly easier to determine the early warning findings of sepsis. In the study, the majority of nurses correctly identified the early findings of sepsis, but the rates of the correct responses to the variables of lactate >2 mM, leucopenia and hypothermia were low. Female gender, having a graduate degree, unit type, total work experience, having received training on sepsis and working with a patient diagnosed with sepsis in the last month made a significant difference in determining the early warning findings of sepsis accurately. CONCLUSIONS Nurses had a good rate of identifying early sepsis findings. Yet, they could not distinguish between early sepsis and late sepsis findings. RELEVANCE TO CLINICAL PRACTICE The results of the study can support nursing practices in the diagnostic process by considering the factors affecting nurses' ability to distinguish early sepsis findings from late sepsis findings and to identify them correctly.
Collapse
|