1
|
Kim YB, Lee SH, Kasala D, Zhao Y, Jiao A, Hong J, Kim JS, Yoon AR, Yun CO. Potent therapeutic efficacy of intranasally deliverable paclitaxel modified with pH-sensitive and PEGylated polymeric micelle against glioblastoma. J Control Release 2025; 382:113711. [PMID: 40204132 DOI: 10.1016/j.jconrel.2025.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common type of brain tumor. Conventional therapies for GBM, such as surgery or radiotherapy, have shown inadequate therapeutic effect. Similarly, a large fraction of chemotherapeutics are ineffective against GBM due to the blood-brain barrier (BBB) preventing effective delivery of these drugs to the brain. To overcome these obstacles, an intranasally administrable and multifunctional drug-loaded polymeric micelle composed of a pH-sensitive PPCBA-PEI-Arg (PPA) polymer conjugated with PEGylated paclitaxel (PEG-PTX; PPP) was synthesized to treat GBM. PPP was more soluble in an aqueous solution than parental PTX and was more effectively internalized into the GBM cells. Further, PPP elicited a more potent cancer cell killing effect than PTX under physiological pH condition, which was further augmented under the mildly acidic condition that emulated the tumor microenvironment. Intranasal administration of PPP into orthotopic GBM tumor xenograft-bearing mice led to more efficient delivery of the drug to the brain tissues compared to parental PTX delivered via intranasal or intravenous route, thus resulting in superior inhibition of GBM growth. Collectively, these findings demonstrated that intranasal delivery of PTX via pH-sensitive and PEGylated polymeric micelles can be an effective approach for the treatment of aggressive GBM.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Soo-Hwan Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yuebin Zhao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., Seoul, Republic of Korea
| | - Jin Su Kim
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dakal TC, Ranga V, Kakde GS, Thakur M, Yadav V, Sharma NK, Maurya PK. Systematic comprehension of genomics and mutational landscape of glioma: A goal towards advanced therapeutics. Neuroscience 2025; 573:491-504. [PMID: 40127758 DOI: 10.1016/j.neuroscience.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
We provide a systematic understanding of the mutation frequency, genetic profile, and functional implications of genes associated with glioma. Through an analysis of data from the Human Gene Mutation Database (HGMD) and clinical information obtained from a diverse cohort of patients, we identified prominent mutated genes in glioma. PTEN, TP53, EGFR, and MUC16 emerged as the most frequently mutated, each exceeding a 10% occurrence rate. Correlative analyses confirmed phenotypic associations between genes known to cause glioma and various other cancer types, underscoring shared genetic factors in tumorigenesis. Furthermore, we revealed sex-specific mutation patterns and significant age-related variations in glioma incidence. Transcription factors such as TP53 and PPARG were recognized as crucial regulators of genes associated with glioma, emphasizing their pivotal roles in glioma pathogenesis. Enrichment analysis highlighted the involvement of fundamental biological processes and pathways, while our protein-protein interaction (PPI) analysis identified TP53 as a central hub within the network of genes associated with glioma. Additionally, the prevalence of kinases in these interactions underscores the relevance of kinase signaling in glioma pathogenesis. These findings will aid in the identification of potential therapeutic and diagnostic targets for future research and clinical applications.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001 Rajasthan, India.
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat 785013 Assam, India
| | - Ganesh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031 Haryana, India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031 Haryana, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031 Haryana, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022 Rajasthan, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031 Haryana, India.
| |
Collapse
|
3
|
Wang G, Guo H, Wei M, Wang Y, Jin Z, Zhou J, He J, Li Y. A Hybrid-Targeting Nanoparticle for Penetrable Delivery of Temozolomide to Enhance Glioblastoma Therapy. NANO LETTERS 2025. [PMID: 40325882 DOI: 10.1021/acs.nanolett.5c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Chemotherapy for glioblastoma (GBM) has not achieved the desired outcome due to inefficient blood-brain barrier (BBB) penetration and limited tumor-specific drug accumulation. Strategies that employ bioinspired nanoparticles to enhance targeted drug accumulation can help improve therapeutic efficacy. In this work, a novel nanoparticle, PCM@TMA-lip, exhibiting hybrid-targeting capabilities, is presented, with an engineered cell membrane coated on a lipid core. The membrane modified with a biologically derived peptide enables PCM@TMA-lip to evade immune clearance and enable precise tumor targeting. The lipid core with docosahexaenoic acid (DHA)-conjugated Temozolomide (TMZ) enhances FABP7-mediated uptake, promotes lysosomal escape via lipid peroxidation, and reduces tumor migration and drug resistance. In vitro, PCM@TMA-lip inhibited tumor cell malignancy and suppressed the growth of 3D spheroids. In vivo, it suppressed tumor progression, reduced Ki67+ proliferation, increased TUNEL+ apoptosis, and prolonged survival in GBM-bearing mice, highlighting its potential as an effective strategy to improve GBM chemotherapy.
Collapse
Affiliation(s)
- Guanru Wang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P.R. China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Hao Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan 030000, P.R. China
| | - Mengxin Wei
- School of Chinese Materia Medical Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ying Wang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, P.R. China
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, P.R. China
| | - Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, P.R. China
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P.R. China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, P.R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, P.R. China
- School of Chinese Materia Medical Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
4
|
Gomes I, Oliveira RJDS, Girol AP. Signaling pathways in glioblastoma. Crit Rev Oncol Hematol 2025; 209:104647. [PMID: 39961403 DOI: 10.1016/j.critrevonc.2025.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Cancer is one of the main public health problems worldwide. Among tumors of the Central Nervous System (CNS), glioblastoma (GBM) affects 49.1 % of malignant brain tumors, and despite standard treatment, patients diagnosed with GBM have a dismal prognosis, a high rate of recurrence after tumor resection and poor survival. Since 2016, the World Health Organization (WHO) has included molecular biomarkers in the classification of these tumors, as knowing the heterogeneity and possible genetic changes allows for new therapeutic possibilities. The purpose of this review was to provide an overview of epidemiology and classification, as well as changes in signaling pathways resulting from genetic alterations that affect crucial factors in tumorigenesis, response to treatment and prognosis. Therefore, understanding and characterizing the vast genetic heterogeneity of GBM, both genetic and epigenetic alterations, enable a greater comprehension of the pathogenesis of this tumor, potentially helping to bring new therapeutic approaches and personalization of treatment through the different genetic alterations in each patient.
Collapse
Affiliation(s)
- Isabella Gomes
- Department of Biology, Post Graduate Program in Biosciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, Brazil; Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil
| | | | - Ana Paula Girol
- Department of Biology, Post Graduate Program in Biosciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, Brazil; Experimental and Clinical Research Center (CEPEC), Padre Albino University Center (UNIFIPA), Catanduva, SP, Brazil; Post Graduate Program in Structural and Functional Biology, Paulista School of Medicine (UNIFESP-EPM), Federal University of São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
6
|
Douglas C, Jain S, Lomeli N, Lepe J, Di K, Nandwana NK, Mohammed AS, Vu T, Pham J, Kenney MC, Das B, Bota DA. Dual targeting of the mitochondrial Lon peptidase 1 and the chymotrypsin-like proteasome activity as a potential therapeutic strategy in malignant astrocytoma models. Pharmacol Res 2025; 215:107697. [PMID: 40088962 DOI: 10.1016/j.phrs.2025.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Malignant astrocytomas are aggressive primary brain tumors characterized by extensive hypoxia-induced, mitochondria-dependent changes such as altered respiration, increased chymotrypsin-like (CT-L) proteasome activity, decreased apoptosis, drug resistance, stemness, and increased invasiveness. Mitochondrial Lon Peptidase 1 (LonP1) overexpression and increased CT-L proteasome activity are biomarkers of an aggressive high-grade phenotype and found to be associated with recurrence and poor patient survival. In preclinical models, small molecule agents targeting either LonP1 or the proteasome CT-L activity have anti-astrocytoma activity. Here, we present evidence that the dual inhibition of LonP1 and CT-L proteasome activity effectively induces ROS production, leading to apoptosis in malignant astrocytoma established cell lines and patient-derived glioma stem cell-like cultures. We also evaluated a novel small molecule, BT317, derived from the coumarinic compound 4 (CC4) using structure-activity modeling, which we found to inhibit both LonP1 and CT-L proteasome activity. Using gain- and loss-of-function genetic models, we discovered that LonP1 is both necessary and sufficient to drive BT317 drug sensitivity in established and patient-derived glioma stem-like cells by generating ROS and inducing apoptosis. In vitro, BT317 had activity as a single agent but, more importantly, enhanced synergy with the standard of care commonly used chemotherapeutic temozolomide (TMZ). In an orthotopic xenograft astrocytoma model, BT317 crossed the blood-brain barrier, showed selective activity at the tumor site, and demonstrated therapeutic efficacy as a single agent and combined with TMZ. BT317 defines an emerging class of LonP1 and CT-L inhibitors that exhibited promising anti-tumor activity and could be a potential candidate for malignant astrocytoma therapeutics. SIMPLE SUMMARY: Malignant astrocytoma patients have poor clinical outcomes, and novel treatments are needed to limit tumor recurrence and improve their overall survival. These tumors have a malignant phenotype mediated by altered mitochondrial metabolism, abnormal protein processing, and adaptation to hypoxia. We have previously published that astrocytomas are especially vulnerable to proteasome inhibitors as well as to inhibitors of the mitochondrial Lon Peptidase 1 (LonP1), but the effect of combining the two strategies has not been reported. Here, we present evidence that the dual inhibition of LonP1 and Chymotrypsin-like (CT-L) proteasome activity effectively induces cellular reactive oxygen species (ROS) production, leading to apoptosis in malignant astrocytoma established cell lines and patient-derived glioma stem cell-like cultures. We developed BT317, a small molecule dual inhibitor, which crosses the blood-brain barrier and shows strong synergy with the standard of care, temozolomide (TMZ), in the astrocytoma cell lines independent of their isocitrate dehydrogenase (IDH) profile and in an orthotopic glioma murine model. This preclinical study demonstrated the potential of dual LonP1 and CT-L proteasome inhibition as a novel therapeutic strategy for malignant astrocytoma and provides insight for future clinical translational studies alone or in combination with other chemotherapies.
Collapse
Affiliation(s)
- Christopher Douglas
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Shashi Jain
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Javier Lepe
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | | | - Thao Vu
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - James Pham
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Maria Cristina Kenney
- Department of Ophthalmology Research, University of California Irvine, Irvine, CA, USA
| | - Bhaskar Das
- University at Buffalo, The State University of New York (SUNY), USA; School of Pharmacy and Pharmaceutical Sciences, SUNY, NY, USA.
| | - Daniela A Bota
- Department of Experimental Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Juan YC, Chen X, Tseng JY, Lin HJ, Hung CH, Hsueh PR, Lin JJ, Cho DY, Chen CC. Beyond the blood-brain barrier: feasibility and technical validation of dual-compartment circulating tumor cells detection in high-grade glioma patients. Neurosurg Rev 2025; 48:359. [PMID: 40214852 PMCID: PMC11991960 DOI: 10.1007/s10143-025-03511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
The elusive nature of brain tumor progression, hidden behind the blood-brain barrier, presents significant challenges for treatment monitoring in high-grade gliomas. In this feasibility study, we evaluate a novel approach to tracking glioblastoma through liquid biopsy, assessing whether tumor cells leave detectable molecular footprints in both blood and cerebrospinal fluid (CSF). Using the MiSelect R II System with specialized microfluidic technology, we analyzed paired blood and CSF samples from six glioblastoma patients, revealing a striking presence of circulating tumor cells (CTCs)- with higher abundance in CSF, where detection rates reached 100% compared to 83.3% in blood. Our technical validation demonstrates the system's capability to identify CTCs through multi-marker analysis (EGFR+/GFAP+/CD45-). Preliminary observations revealed higher CTC counts in CSF (median 15.5 cells/mL) compared to blood (median 3.0 cells/mL), with notable differences between compartments suggesting they may reflect distinct aspects of disease biology. In a patient who developed progressive disease, we observed a substantial increase in CSF CTCs from 14 to 116 cells/mL, warranting further investigation in larger cohorts. Additionally, we detected CTC clusters in both compartments, an intriguing finding with potential biological significance. While our interim analysis provides technical proof-of-concept for CTC detection in glioblastoma patients, the limited sample size precludes definitive conclusions regarding clinical utility. These findings establish a methodological foundation for future comprehensive studies exploring the relationship between CTC dynamics and clinical outcomes in high-grade gliomas.
Collapse
Affiliation(s)
- Yu-Chung Juan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | | | - Hui-Ju Lin
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Cheng-Hao Hung
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jung-Ju Lin
- Sleep Medicine Center, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Barcan EN, Duta C, Staicu GA, Artene SA, Alexandru O, Costachi A, Pirvu AS, Tache DE, Stoian I, Popescu SO, Tataranu LG, Dricu A. Current Research Trends in Glioblastoma: Focus on Receptor Tyrosine Kinases. Int J Mol Sci 2025; 26:3503. [PMID: 40332008 PMCID: PMC12027435 DOI: 10.3390/ijms26083503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by molecular complexity and resistance to conventional treatments, including surgery, radiation, and chemotherapy. Despite these challenges, advancements in receptor tyrosine kinase (RTK) research, combined with multi-omics approaches, hold promise for improving patient outcomes and survivability. RTKs are central to GBM progression, influencing cell proliferation, survival, and angiogenesis. However, the complexity of RTK signaling necessitates a broader, integrative perspective, which has been enabled by the emergence of -omics sciences. Multi-omics technologies-including genomics, transcriptomics, proteomics, and metabolomics-offer unprecedented insights into the molecular landscape of GBM and its RTK-driven pathways. Genomic studies have revealed mutations and amplifications in RTK-related genes, while transcriptomics has uncovered alterations in gene expression patterns, providing a clearer picture of how these aberrations drive tumor behavior. Proteomics has further delineated changes in protein expression and post-translational modifications linked to RTK signaling, highlighting novel therapeutic targets. Metabolomics complements these findings by identifying RTK-associated metabolic reprogramming, such as shifts in glycolysis and lipid metabolism, which sustain tumor growth and therapy resistance. The integration of these multi-omics layers enables a comprehensive understanding of RTK biology in GBM. For example, studies have linked metabolic alterations with RTK activity, offering new biomarkers for tumor classification and therapeutic targeting. Additionally, single-cell transcriptomics has unveiled intratumoral heterogeneity, a critical factor in therapy resistance. This article highlights the transformative potential of multi-omics in unraveling the complexity of RTK signaling in GBM. By combining these approaches, researchers are paving the way for precision medicine strategies that may significantly enhance diagnostic accuracy and treatment efficacy, providing new hope for patients facing this devastating disease.
Collapse
Affiliation(s)
- Edmond Nicolae Barcan
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania; (E.N.B.); (G.A.S.); (S.A.A.); (A.S.P.); (D.E.T.)
| | - Carmen Duta
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Georgiana Adeline Staicu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania; (E.N.B.); (G.A.S.); (S.A.A.); (A.S.P.); (D.E.T.)
| | - Stefan Alexandru Artene
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania; (E.N.B.); (G.A.S.); (S.A.A.); (A.S.P.); (D.E.T.)
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania;
| | - Alexandra Costachi
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania;
| | - Andreea Silvia Pirvu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania; (E.N.B.); (G.A.S.); (S.A.A.); (A.S.P.); (D.E.T.)
| | - Daniela Elise Tache
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania; (E.N.B.); (G.A.S.); (S.A.A.); (A.S.P.); (D.E.T.)
| | - Irina Stoian
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Stefana Oana Popescu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania; (E.N.B.); (G.A.S.); (S.A.A.); (A.S.P.); (D.E.T.)
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Anica Dricu
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| |
Collapse
|
9
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
10
|
Palavani LB, Ferreira MY, Pereira MAOM, Cheidde L, de Oliveira Almeida G, Cheidde L, Júnior PPL, Pereira VGG, Bertani R, Paiva W. Cesium 131 seeds for high-grade gliomas: a systematic review and meta-analysis of gammatile as a brachytherapy innovation. Neurosurg Rev 2025; 48:299. [PMID: 40091071 DOI: 10.1007/s10143-025-03429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
High-grade gliomas (HGG) are a neuro-oncology challenge due to their aggressive nature,with conventional therapies like radiation and chemotherapy often yielding limited success. Cesium-131 (Cs-131) brachytherapy is a promising adjunct due to its short half-life (9.7 days) and high energy, enabling targeted radiation delivery with less exposure. GammaTile (GT Medical Technologies) uses Cs-131 seeds in a bioresorbable collagen matrix, enabling immediate post-surgical radiation while safeguarding healthy tissue. Therefore, this study aims to evaluate the current evidence of using Gammatile in HGG. We performed a systematic review and single-arm meta-analysis. PubMed, Web of Science, Scopus, and Embase were searched for eligible trials. A random-effects model was used to calculate the Proportions and Means, with 95% confidence intervals (CIs) and a significance level of 5%. Statistical analyses were conducted with RStudio 4.3. Twelve studies included 110 patients, 57 male (51.8%), with a mean age of 50.2 years and a follow-up of 29.47 months. Four endpoints were analyzed: Mortality (Proportion 6%; 95% CI 2% to 15%; I2 = 0%); Recurrence (Proportion 100%; 95% CI 11% to 100%; I2 = 0%); Overall Survival (OS) (Mean 27.30 months; 95% CI 17.34 to 42.96; I2 = 63.9%); Progression-Free Survival (PFS) (Mean 8.81 months; 95% CI 7.43-10.43; I2 = 0%). GammaTile shows promising outcomes for HGG, with mean OS of 27.30 months, and PFS of 8.81 months. Despite the 100% recurrence rate, the 6% mortality rate suggests contribution to prolonging patient survival.
Collapse
Affiliation(s)
| | - Marcio Yuri Ferreira
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA
| | | | - Lidia Cheidde
- Faculty of Medicine, Pontifical Catholic University of São Paulo (PUCSP), Sorocaba, São Paulo, Brazil
| | | | | | | | | | - Raphael Bertani
- Department of Neurosurgery, University of São Paulo, São Paulo, Brazil
| | - Wellingson Paiva
- Department of Neurosurgery, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Holman R, McDannold N. Identifying new therapeutics for focused ultrasound-enhanced drug delivery in the management of glioblastoma. Front Oncol 2025; 15:1507940. [PMID: 40182047 PMCID: PMC11965939 DOI: 10.3389/fonc.2025.1507940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/07/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma, a grade IV astrocytoma, typically has a poor prognosis, with most patients succumbing within eighteen months of diagnosis and few experiencing long-term survival. Focused ultrasound, an emerging localized therapy, has shown promising results in early-phase studies for glioblastoma by improving the uptake of temozolomide and carboplatin. The blood-brain barrier is critical to homeostasis by regulating the movement of substances between the bloodstream and the central nervous system. While this barrier helps prevent infections from bloodborne pathogens, it also hinders the delivery of cancer therapies to gliomas. Combining focused ultrasound with circulating microbubbles enhances local blood-brain barrier permeability, facilitating the intratumoral uptake of systemic cancer therapies. The purpose of this study was to identify promising new therapeutics in the treatment of glioblastoma for localized drug delivery via focused ultrasound. This review provides an overview of the current standard of care for newly diagnosed and recurrent glioblastoma, identifies current therapies indicated for the treatment, discusses key aspects of microbubble resonators, describes focused ultrasound devices under evaluation in human trials, and concludes with a perspective of emerging therapeutics for future studies.
Collapse
Affiliation(s)
- Ryan Holman
- Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | | |
Collapse
|
12
|
Xiong Y, Sun M, Yang Q, Zhang W, Song A, Tan Y, Mao J, Liu G, Xue P. Nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Acta Biomater 2025; 194:38-57. [PMID: 39884522 DOI: 10.1016/j.actbio.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention. The advent of nanoparticle-based therapies has revolutionized cancer treatment and provided highly effective options. Consequently, various strategically designed nano-delivery platforms have been established to promote the efficacy of immune therapy against GBM. This review delves into the recent advancements in nano-based delivery systems that are designed to modulate immune cells in GBM microenvironment, and explores their multifaceted mechanisms, including the blockade of immune checkpoints, the restraint of immunosuppressive cells, the coordination of tumor-associated macrophages, the activation of innate immune cells, and the stimulation of adaptive immunity. Collectively, this summary not only advances the comprehension involved in modulating antitumor immune responses in GBM, but also paves the way for the development of innovative therapeutic strategies to conquer GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma (GBM) is the most lethal brain tumor, with a median survival rate of merely 12-16 months after diagnosis. Despite surgical, radiation and chemotherapy treatments, the two-year survival rate for GBM patients is less than 10 %. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. Most recently, novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In particular, taking account of the highly immunosuppressive tumor microenvironment in GBM, recent advancements in nano-based delivery systems are put forward to stimulate immune cells in GBM and unravel their multifaceted mechanisms. This review summarizes the latest nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Moreover, the development trends and challenges of nanoparticle-based drug delivery systems in modulating the immunity of GBM are predicted, which may facilitate widespread regimens springing up for successfully treating GBM.
Collapse
Affiliation(s)
- Yongqi Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qinhao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Jinning Mao
- Health Medical Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China.
| |
Collapse
|
13
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
14
|
Doherty C, Wilbanks B, Jain S, S Pearson K, Bakken K, Burgenske D, Lett NW, Sarkaria J, Maher L. In vivo selection of anti-glioblastoma DNA aptamers in an orthotopic patient-derived xenograft model. NAR Cancer 2025; 7:zcaf005. [PMID: 39968526 PMCID: PMC11833697 DOI: 10.1093/narcan/zcaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor of adults. Current therapeutic options yield dismal prognoses that have remained essentially unchanged over nearly two decades. Diffuse growth patterns, high intratumoral heterogeneity, and variable blood-brain barrier integrity limit treatment efficacy, creating challenges that rational small molecule design has not overcome. Antibody-drug conjugates have shown some promise, leading us to hypothesize that smaller folded DNA aptamers, developed in vivo via principles of natural selection, might eventually have advantages for drug delivery. Here, we document the first in vivo DNA aptamer selection involving an orthotopic patient-derived xenograft GBM mouse model to identify tumor-homing DNA aptamers. We demonstrate the preferential accumulation of these aptamers in the tumor relative to other tissues 4 h after intraperitoneal injection. The aptamers can be detected by quantitative polymerase chain reaction, fluorescent tumor staining, and stain GBM tumor section from untreated mice and the GBM tumor cells in culture. Two of three candidates are selective for the target cell line in vitro and do not bind other human tumor cells. In vivo selection of tumor-specific DNA aptamers demonstrates a novel approach for diagnostics or toxin delivery that might allow for the development of individualized therapies.
Collapse
Affiliation(s)
- Caroline D Doherty
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States
| | - Brandon A Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States
| | - Sonia Jain
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Keenan S Pearson
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States
| | - Katie K Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Danielle M Burgenske
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Nay Won Lett
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States
- Summer Undergraduate Research Fellowship, Mount Holyoke College, South Hadley, MA, 01075 United States
| | - Jann N Sarkaria
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Louis J Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States
| |
Collapse
|
15
|
Nussinov R, Yavuz BR, Jang H. Molecular principles underlying aggressive cancers. Signal Transduct Target Ther 2025; 10:42. [PMID: 39956859 PMCID: PMC11830828 DOI: 10.1038/s41392-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
16
|
Chen IC, Lin HY, Liu ZY, Cheng WJ, Yeh TY, Yang WB, Tran HY, Lai MJ, Wang CH, Kao TY, Hung CY, Huang YL, Liou KC, Hsieh CM, Hsu TI, Liou JP. Repurposing Linezolid in Conjunction with Histone Deacetylase Inhibitor Access in the Realm of Glioblastoma Therapies. J Med Chem 2025; 68:2779-2803. [PMID: 39836457 PMCID: PMC11831592 DOI: 10.1021/acs.jmedchem.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery. The results indicated that the histone deacetylase modification, referred to as compound 1, demonstrated promising cytotoxic effects in various brain tumor cell lines. Further comprehensive mechanism studies indicated that compound 1 induced acetylation, leading to DNA double-strand breaks, and induced the ubiquitination of RAD51, disrupting the DNA repair process. Furthermore, compound 1 also exhibited dramatic improvement in the orthotopic GBM mouse model, demonstrating its efficacy and satisfying BBB penetration. Therefore, the reported compound 1, provided with an independent therapeutic pathway, satisfying elongation in survival and tumor size reduction, and the ability to penetrate the BBB, was potent to achieve further development.
Collapse
Affiliation(s)
- I-Chung Chen
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Taipei
Neuroscience Institute, New Taipei
City 235, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taiwan Brain Disease Foundation, Taipei 100, Taiwan
| | - Zheng-Yang Liu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wei-Jie Cheng
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Tzu-Yi Yeh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Hoang Yen Tran
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 902342, Vietnam
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Chung-Han Wang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Chia-Yang Hung
- Department
of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Ya-Lin Huang
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Ke-Chi Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Chien-Ming Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutics,
School of Pharmacy, University College, London WC1N 1AX, U.K.
| | - Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
17
|
Koo J, Shin Y, Jeon H, Cheong J, Cho S, Park C, Song EC, Ramsey JD, Lim C, Oh KT. Enhancing glioblastoma therapy via intranasal administration of highly potent cell-penetrating peptide decorated nanoparticles. J Control Release 2025; 378:997-1012. [PMID: 39724950 DOI: 10.1016/j.jconrel.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a devastating primary tumor of the central nervous system with a significantly poor prognosis. The primary challenge in treating GBM lies in the restrictive nature of the blood-brain barrier (BBB), impeding effective drug delivery to the brain. In this study, intranasal polymeric micelles encapsulating a quercetin-etoposide combination were developed to induce synergistic apoptotic effects and enhance direct drug delivery to the brain. However, the in vivo anticancer efficacy of the unmodified micelle formulation via intranasal administration remains limited. Therefore, this aims to investigate the enhancement of the formulation by conjugating the micelles with a novel and highly potent cell-penetrating peptide (CPP), RMMR1, identified using the intra-dermal delivery technology platform developed by REMEDI Co., Ltd. This modification seeks to enhance the brain-targeting capability of the micelles. The CPP-modified micelles encapsulating the quercetin-etoposide combination (CM(QE)) demonstrated superior in vivo brain-delivery efficiency and enhanced cellular uptake after intranasal administration. Furthermore, animal studies showed significant tumor reduction and increased survival rates, with no significant changes in body weight observed. These findings suggest that intranasal administration of CM(QE) holds promise as a significant advancement in chemotherapy for GBM.
Collapse
Affiliation(s)
- Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyewon Jeon
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jaehyun Cheong
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd. Research center, Songdo 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd. Research center, Songdo 21990, Republic of Korea
| | - Ee Chan Song
- Remedi Co., Ltd. Research center, Songdo 21990, Republic of Korea
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Chaemin Lim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea; CHA Advanced Research Institute, CHA Bundang Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488 Gyeonggi-do, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
18
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2025; 30:oyae227. [PMID: 39401002 PMCID: PMC11883162 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke’s Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
19
|
Zhao Y, Zhou X, Hong L, Yao J, Pan J, Shafi S, Siraj S, Ahmad N, Liu J, Zhao R, Sun M. Morusin regulates the migration of M2 macrophages and GBM cells through the CCL4-CCR5 axis. Int Immunopharmacol 2025; 147:113915. [PMID: 39740503 DOI: 10.1016/j.intimp.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive tumor in the central nervous system. Tumor-associated macrophage (TAMs) represent a major immune cell population in tumor microenvironment (TME) and exert immunosuppressive effects that impede GBM treatment. Morusin is a flavonoid extracted from mulberry trees and has anti-tumor properties against various cancers, including glioma. However, the impact of morusin on the TME of gliomas has not been explored. METHODS We evaluated the effect of morusin on the tumor microenvironment using a mouse glioma model through in vivo and in vitro experiments. In vitro experiments demonstrated the effects of morusin on the viability of RAW264.7 and THP1 cells, and the migration ability of M2 macrophages. Furthermore, we investigated the effect of conditioned medium (CM) of morusin-treated M2 macrophages on the migration of glioblastoma cell lines GL261, U87, and U251. RESULT Morusin alleviated the GBM progression and prolonged mouse survival by inhibiting the ratio of macrophages to CD206+ macrophages. Mechanistically, we demonstrated that morusin could effectively inhibit the secretion of the chemokine CCL4 in M2 macrophage which consequently decreased CCL4-dependent CCR5 activation. This leads to the reduced migration of both macrophages and glioblastoma cells in TME. These findings provide a strong rationale for the development of morusin as a potential therapeutic agent for GBM, either as a standalone treatment or in combination with other immunotherapeutic strategies, and warrant further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Yu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Xinying Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Lei Hong
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital., No. 1 Lijiang Road, Suzhou 215153, China.
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Shaheryar Shafi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Nafees Ahmad
- Institute of Biomedical & Genetic Engineering, Islamabad 44000, Pakistan.
| | - Jiangang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Rongchuan Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
20
|
Vasudevan MT, Rangaraj K, Ramesh R, Muthusami S, Govindasamy C, Khan MI, Arulselvan P, Muruganantham B. Inhibitory effects of Gracilaria edulis and Gracilaria salicornia against the MGMT and VEGFA biomarkers involved in the onset and advancement of glioblastoma using in silico and in vitro approaches. Biotechnol Appl Biochem 2025; 72:207-224. [PMID: 39168850 DOI: 10.1002/bab.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma (GBM), an aggressive primary brain tumor originating from glial cells, poses significant treatment challenges due to its rapid growth and invasiveness. The exact mechanisms of GBM's brain damage remain unclear. This study examines primary molecular markers commonly assessed in GBM patients, including brain-derived neurotrophic factor (BDNF), platelet-derived growth factor receptor A (PDGFRA), O6-methylguanine DNA methyltransferase (MGMT), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor A (VEGFA) using computational approaches. The study revealed significant differences (p ≤ 0.05) in PDGFRA, EGFR, and VEGFA expression rates, which are particularly interesting. Additionally, MGMT and VEGFA showed higher hazard ratios. Expression levels of MGMT and VEGFA were visualized in immune and malignant cells using single-cell RNA datasets GSE103224 and GSE148842. From a total of 48 compounds in Gracilaria edulis and 86 in Gracilaria salicornia, we identified 15 compounds capable of crossing the blood-brain barrier. Notably, 2-tridecanone (binding affinity [BA] = -4.2 kcal/mol; root mean square deviation [RMSD] = 1.479 Å) and decanoic acid, ethyl ester (BA = -4.2 kcal/mol; RMSD = 1.702 Å) from G. edulis interacted with MGMT via hydrogen bonds. The compound alpha-terpineol interacted with MGMT (BA = -5.7 kcal/mol; RMSD = 0.501 Å) and VEGFA (BA = -4.7 kcal/mol; RMSD = 2.483 Å). Ethanolic and methanolic extracts from G. edulis and G. salicornia demonstrated mild anti-cell proliferation properties in the GBM LN-229 cell line, suggesting potential therapeutic benefits. This study highlights the significance of molecular markers and natural compounds in understanding and potentially treating GBM.
Collapse
Affiliation(s)
- Miji Thandaserry Vasudevan
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Kaviyaprabha Rangaraj
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ragupathi Ramesh
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Sridhar Muthusami
- Department of Biochemistry, Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Ibrar Khan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Bharathi Muruganantham
- Department of Biochemistry, Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
21
|
Jackson GA, Adamson DC. Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets. Cells 2025; 14:171. [PMID: 39936963 PMCID: PMC11816616 DOI: 10.3390/cells14030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical process in malignant ovarian cancer metastasis. EMT involves the conversion of epithelial cells to mesenchymal cells, conferring enhanced migratory and invasive capabilities. Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor and exhibits an aggressive invasive phenotype that mimics some steps of EMT but does not undergo true metastasis, i.e., the invasion of other organ systems. This study conducts a comparative genomic analysis of EMT in ovarian cancer and invasion in GBM-two malignancies characterized by poor prognosis and limited therapies. Investigating the molecular biology in ovarian cancer and GBM demonstrates shared mechanisms of tumor progression, such as similar genetic and molecular pathways influencing cell plasticity, invasion, and resistance to therapy. The comparative analysis reveals commonalities and differences in the regulatory networks and gene expression profiles associated with EMT and invasion in these cancers. Key findings include the identification of core EMT regulators, such as TWIST1, SNAIL, and ZEB1, which are upregulated in both ovarian cancer and GBM, promoting mesenchymal phenotypes and metastasis. Additionally, the analysis uncovers EMT-related pathways, such as the PI3K/AKT and TGF-β signaling, which are critical in both cancers but exhibit distinct regulatory dynamics. Understanding the intricacies of EMT in ovarian cancer and invasion in GBM provides valuable insights into their aggressive behavior and identifies potential common therapeutic targets. The findings stress the importance of targeting EMT/invasion transitions to develop effective treatments to halt progression and improve patient outcomes in these malignancies.
Collapse
Affiliation(s)
| | - David Cory Adamson
- Neurosurgery Section, Atlanta VA Healthcare System, School of Medicine, Mercer University, Georgia Neurosurgical Institute, Macon, GA 31207, USA;
| |
Collapse
|
22
|
Sun S, Shyr Z, McDaniel K, Fang Y, Tao D, Chen CZ, Zheng W, Zhu Q. Reversal gene expression assessment for drug repurposing, a case study of glioblastoma. J Transl Med 2025; 23:25. [PMID: 39773231 PMCID: PMC11706105 DOI: 10.1186/s12967-024-06046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its underlying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration (FDA) approved drugs used for GBM deliver satisfactory survival improvement. METHODS This study presents a novel computational pipeline by utilizing gene expression data analysis for GBM for drug repurposing to address the challenges in rare disease drug development, particularly focusing on GBM. The GBM Gene Expression Profile (GGEP) was constructed with multi-omics data to identify drugs with reversal gene expression to GGEP from the Integrated Network-Based Cellular Signatures (iLINCS) database. RESULTS We prioritized the candidates via hierarchical clustering of their expression signatures and quantification of their reversal strength by calculating two self-defined indices based on the GGEP genes' log2 foldchange (LFC) that the drug candidates could induce. Among five prioritized candidates, in-vitro experiments validated Clofarabine and Ciclopirox as highly efficacious in selectively targeting GBM cancer cells. CONCLUSIONS The success of this study illustrated a promising avenue for accelerating drug development by uncovering underlying gene expression effect between drugs and diseases, which can be extended to other rare diseases and non-rare diseases.
Collapse
Affiliation(s)
- Shixue Sun
- Informatics Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Zeenat Shyr
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Kathleen McDaniel
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Yuhong Fang
- Analytical Chemistry Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Dingyin Tao
- Analytical Chemistry Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Catherine Z Chen
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Wei Zheng
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Qian Zhu
- Informatics Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA.
| |
Collapse
|
23
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
24
|
Lu Y, Wang Z, Zhang D, Luo N, Yang H, Chen D, Huang H. Application of Circulating Tumor DNA in the Auxiliary Diagnosis and Prognosis Prediction of Glioma. Cell Mol Neurobiol 2024; 45:6. [PMID: 39692767 DOI: 10.1007/s10571-024-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Glioma is the most common primary malignant brain tumor. Despite significant advances in the past decade in understanding the molecular pathogenesis of this tumor and exploring therapeutic strategies, the prognosis of patients with glioma remains poor. Accurate diagnosis of glioma is very important for the treatment and prognosis. Although the gold-standard method for the diagnosis and prognosis prediction of patients with glioma is tissue biopsy, it still has many limitations. Liquid biopsy can provide information on the auxiliary diagnosis and prognosis of gliomas. In this review, we summarized the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in the auxiliary diagnosis and prognosis of glioma. The common methods used to detect ctDNA in gliomas using samples including blood and cerebrospinal fluid (CSF) and the detection techniques for ctDNA, including droplet digital PCR (ddPCR) and next-generation sequencing (NGS), were discussed. Detection of ctDNA from plasma of patients with brain tumors remains challenging because of the blood-brain barrier (BBB). CSF has been proposed as a medium for ctDNA analysis in brain tumors, and mutation detection using plasma ctDNA was less sensitive than CSF ctDNA sequencing. Moreover, ongoing relevant clinical studies were summarized. Finally, we discussed the challenges, and future directions for the studies on ctDNA in glioma.
Collapse
Affiliation(s)
- Ying Lu
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Danmeng Zhang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Ningning Luo
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Hui Yang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China.
| |
Collapse
|
25
|
Kumar M, Nassour-Caswell LC, Alrefai H, Anderson JC, Schanel TL, Hicks PH, Cardan R, Willey CD. A High-Throughput Neurosphere-Based Colony Formation Assay to Test Drug and Radiation Sensitivity of Different Patient-Derived Glioblastoma Lines. Cells 2024; 13:1995. [PMID: 39682742 PMCID: PMC11640616 DOI: 10.3390/cells13231995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The gold standard assay for radiation response is the clonogenic assay, a normalized colony formation assay (CFA) that can capture a broad range of radiation-induced cell death mechanisms. Traditionally, this assay relies on two-dimensional (2D) cell culture conditions with colonies counted by fixing and staining protocols. While some groups have converted these to three-dimensional (3D) conditions, these models still utilize 2D-like media compositions containing serum that are incompatible with stem-like cell models such as brain tumor initiating cells (BTICs) that form self-aggregating spheroids in neural stem cell media. BTICs are the preferred patient-derived model system for studying glioblastoma (GBM) as they tend to better retain molecular and phenotypic characteristics of the original tumor tissue. As such, it is important that preclinical radiation studies should be adapted to BTIC conditions. In this study, we describe a series of experimental approaches for performing CFA experiments with BTIC cultures. Our results indicate that serum-free clonogenic assays are feasible for combination drug and radiation testing and may better facilitate translatability of preclinical findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35249, USA; (M.K.); (L.C.N.-C.); (H.A.); (J.C.A.); (T.L.S.); (P.H.H.); (R.C.)
| |
Collapse
|
26
|
Gautam M, Gabrani R. Current Combinatorial Therapeutic Aspects: The Future Prospect for Glioblastoma Treatment. Curr Med Sci 2024; 44:1175-1184. [PMID: 39695017 DOI: 10.1007/s11596-024-2950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/21/2024] [Indexed: 12/20/2024]
Abstract
There are several types of brain tumors but glioblastoma (GBM) is one of the highly malignant tumors. A primary concern with GBM is that the treatment is inadequate. Even after giving many multi-stacked combinations of therapies to patients, inclusive of chemotherapy, radiation, and surgery, the median survival rate remains poor. Due to its heterogeneous nature, the use of selective therapy for specific targeting of tumor cells is of particular importance. Although many treatment alternatives which include surgery with adjuvant chemotherapy and radiotherapy are available, the prognosis of the disease is very poor. Combination therapy is becoming the foundation of modern antitumor therapy and it is continuously evolving and developing innovative drug regimens as evidenced by ongoing preclinical and clinical trials. In this review, we discuss the current treatment options and emerging therapeutic approaches for the treatment of GBM. The prospects for alternative glioblastoma therapy are also discussed.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
27
|
Wu J, Wang N. Current progress of anti‑PD‑1/PDL1 immunotherapy for glioblastoma (Review). Mol Med Rep 2024; 30:221. [PMID: 39364736 PMCID: PMC11462401 DOI: 10.3892/mmr.2024.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/11/2023] [Indexed: 10/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common central nervous system malignancy in adults. GBM may be classified as grade IV diffuse astrocytoma according to the 2021 World Health Organization revised classification of central nervous system tumors, which means it is the most aggressive, invasive, undifferentiated type of tumor. Immune checkpoint blockade (ICB), particularly anti‑programmed cell death protein‑1 (PD‑1)/PD‑1 ligand‑1 immunotherapy, has been confirmed to be successful across several tumor types. However, in GBM, this treatment is still uncommon and the efficacy is unpredictable, and <10% of patients show long‑term responses. Recently, numerous studies have been conducted to explore what factors may indicate or affect the ICB response rate in GBM, including molecular alterations, immune expression signatures and immune infiltration. The present review aimed to summarize the current progress to improve the understanding of immunotherapy for GBM.
Collapse
Affiliation(s)
- Jianheng Wu
- Department of Neurosurgery, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| | - Nannan Wang
- Department of Gastroenterology, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| |
Collapse
|
28
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
29
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
30
|
Wang Y, Chen S, Shi J, Tang T, Dai Y, Xu J, Wei P, Fan X, Lu J, Shan Y, Zhao G. Exploring the efficacy and safety of laser interstitial thermal therapy for recurrent high-grade glioma: the first prospective cohort in China. Clin Transl Oncol 2024:10.1007/s12094-024-03779-9. [PMID: 39579332 DOI: 10.1007/s12094-024-03779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVE Recurrent high-grade gliomas are complicated cancers that require additional treatment options. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a safe method for treating recurrent high-grade glioma; however, its use in China has not been reported. In this study, we aimed to investigate the safety and efficacy of an MRgLITT system (SinoVision™) developed in China for treating recurrent high-grade glioma. METHODS We included a prospective cohort of patients with recurrent high-grade glioma treated with the Chinese MRgLITT system between March 2021 and December 2022. Clinical data, including basic information, complication rates, outcomes, and survival analyses, were collected for patients who had at least 12 months of follow-up. RESULTS 32 patients who completed a rountine follow-up period were enrolled. The estimated 1-year overall survival rate was 65.63%, including 56.52% and 88.89% patients with World Health Organization Grades IV and III gliomas, respectively. Baseline Karnofsky Performance Scale score, tumor grade and volume, and post-LITT chemo- and or radiotherapy were positive factors associated with MRgLITT for recurrent high-grade glioma outcomes. The overall complication rate was 9.38%. CONCLUSION The Chinese MRgLITT system is a safe and effective treatment option for recurrent high-grade glioma. As it is a minimally invasive treatment approach that can be tailored to the individual's anatomy and physiology, MRg LITT may offer a viable alternative for patients who are not suitable candidates for conventional surgical resection.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Sichang Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Ting Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yang Dai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Jinkun Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China.
- National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
31
|
Su Q, Chen J, Liu Z, Fan Y, He S. A pH-Sensitive cRGD-PEG-siRNA Conjugated Compound Targeting Glioblastoma. Bioconjug Chem 2024; 35:1732-1743. [PMID: 39431993 PMCID: PMC11583972 DOI: 10.1021/acs.bioconjchem.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Glioblastoma ranks among the most prevalent primary intracranial tumors, characterized by high mortality and poor prognosis. Chemotherapy remains a key treatment strategy for gliomas, though most current drugs suffer from limited efficacy and significant toxicity. This study focuses on a cRGD-siEGFR coupling compound synthesized in a previous stage. Prior research indicated that cRGD-siEGFR molecules exhibited certain targeting and antitumor properties but faced issues of inadequate targeting, low efficacy, and high renal toxicity. To enhance antitumor efficacy and mitigate side effects, a pH-responsive, long-circulating, and highly targeted siRNA delivery system, the cRGD-PEG-siEGFR conjugate, was developed. The targeting, antitumor effects, and biological distribution of cRGD-PEG-siEGFR were examined. The results demonstrated that cRGD-PEG-siEGFR was effectively taken up by αvβ3-positive U87MG cells, specifically silenced EGFR gene expression, and exhibited antitumor effects. In normal physiological conditions, it avoided uptake by normal cells, thereby reducing side effects. Furthermore, in vivo biodistribution experiments revealed that cRGD-PEG-siEGFR, compared to cRGD-siEGFR, significantly decreased renal accumulation and exhibited prolonged circulation. Consequently, cRGD-PEG-siRNA emerges as a promising drug candidate with attributes of long circulation, high targeting, pH responsiveness, and substantial antitumor efficacy.
Collapse
Affiliation(s)
- Qing Su
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Junxiao Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Ziyuan Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
32
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
33
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Nayak R, Mallick B. BMS345541 is predicted as a repurposed drug for the treatment of TMZ-resistant Glioblastoma using target gene expression and virtual drug screening. Cancer Genet 2024; 288-289:20-31. [PMID: 39213700 DOI: 10.1016/j.cancergen.2024.08.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive and fatal cancers, for which Temozolomide (TMZ) chemo drug is commonly used for its treatment. However, patients gradually develop resistance to this drug, leading to tumor relapse. In our previous study, we have identified lncRNAs that regulate chemoresistance through the competing endogenous RNA (ceRNA) mechanism. In this study, we tried to find FDA-approved drugs against the target proteins of these ceRNA networks through drug repurposing using differential gene expression profiles, which could be used to nullify the effect of lncRNAs and promote the sensitivity of TMZ in GBM. We performed molecular docking and simulation studies of predicted repurposed drugs and their targets. Among the predicted repurposed drugs, we found BMS345541 has a higher binding affinity towards its target protein - FOXG1, making it a more stable complex with FOXG1-DNA. The ADMET analysis of this drug BMS345541 shows a higher half-life and lower cytotoxicity level than other predicted repurposed drugs. Hence, we conjecture that this could be a better drug for increasing the sensitivity of TMZ for treating GBM patients.
Collapse
Affiliation(s)
- Rojalin Nayak
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
35
|
DePalma TJ, Hisey CL, Hughes K, Fraas D, Tawfik M, Scharenberg J, Wiggins S, Nguyen KT, Hansford DJ, Reátegui E, Skardal A. Tuning a bioengineered hydrogel for studying astrocyte reactivity in glioblastoma. Acta Biomater 2024; 189:155-167. [PMID: 39370091 PMCID: PMC11801334 DOI: 10.1016/j.actbio.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Astrocytes play many essential roles in the central nervous system (CNS) and are altered significantly in disease. These reactive astrocytes contribute to neuroinflammation and disease progression in many pathologies, including glioblastoma (GB), an aggressive form of brain cancer. Current in vitro platforms do not allow for accurate modeling of reactive astrocytes. In this study, we sought to engineer a simple bioengineered hydrogel platform that would support the growth of primary human astrocytes and allow for accurate analysis of various reactive states. After validating this platform using morphological analysis and qPCR, we then used the platform to begin investigating how astrocytes respond to GB derived extracellular vesicles (EVs) and soluble factors (SF). These studies reveal that EVs and SFs induce distinct astrocytic states. In future studies, this platform can be used to study how astrocytes transform the tumor microenvironment in GB and other diseases of the CNS. STATEMENT OF SIGNIFICANCE: Recent work has shown that astrocytes help maintain brain homeostasis and may contribute to disease progression in diseases such as glioblastoma (GB), a deadly primary brain cancer. In vitro models allow researchers to study basic mechanisms of astrocyte biology in healthy and diseased conditions, however current in vitro systems do not accurately mimic the native brain microenvironment. In this study, we show that our hydrogel system supports primary human astrocyte culture with an accurate phenotype and allows us to study how astrocytes change in response to a variety of inflammatory signals in GB. This platform could be used further investigate astrocyte behavior and possible therapeutics that target reactive astrocytes in GB and other brain diseases.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kennedy Hughes
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Fraas
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Marie Tawfik
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Scharenberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Wiggins
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Kim Truc Nguyen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Reátegui
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Kwiatkowska-Miernik A, Wasilewski PG, Mruk B, Sklinda K, Bujko M, Walecki J. Estimating Progression-Free Survival in Patients with Primary High-Grade Glioma Using Machine Learning. J Clin Med 2024; 13:6172. [PMID: 39458122 PMCID: PMC11508924 DOI: 10.3390/jcm13206172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: High-grade gliomas are the most common primary malignant brain tumors in adults. These neoplasms remain predominantly incurable due to the genetic diversity within each tumor, leading to varied responses to specific drug therapies. With the advent of new targeted and immune therapies, which have demonstrated promising outcomes in clinical trials, there is a growing need for image-based techniques to enable early prediction of treatment response. This study aimed to evaluate the potential of radiomics and artificial intelligence implementation in predicting progression-free survival (PFS) in patients with highest-grade glioma (CNS WHO 4) undergoing a standard treatment plan. Methods: In this retrospective study, prediction models were developed in a cohort of 51 patients with pathologically confirmed highest-grade glioma (CNS WHO 4) from the authors' institution and the repository of the Cancer Imaging Archive (TCIA). Only patients with confirmed recurrence after complete tumor resection with adjuvant radiotherapy and chemotherapy with temozolomide were included. For each patient, 109 radiomic features of the tumor were obtained from a preoperative magnetic resonance imaging (MRI) examination. Four clinical features were added manually-sex, weight, age at the time of diagnosis, and the lobe of the brain where the tumor was located. The data label was the time to recurrence, which was determined based on follow-up MRI scans. Artificial intelligence algorithms were built to predict PFS in the training set (n = 75%) and then validate it in the test set (n = 25%). The performance of each model in both the training and test datasets was assessed using mean absolute percentage error (MAPE). Results: In the test set, the random forest model showed the highest predictive performance with 1-MAPE = 92.27% and a C-index of 0.9544. The decision tree, gradient booster, and artificial neural network models showed slightly lower effectiveness with 1-MAPE of 88.31%, 80.21%, and 91.29%, respectively. Conclusions: Four of the six models built gave satisfactory results. These results show that artificial intelligence models combined with radiomic features could be useful for predicting the progression-free survival of high-grade glioma patients. This could be beneficial for risk stratification of patients, enhancing the potential for personalized treatment plans and improving overall survival. Further investigation is necessary with an expanded sample size and external multicenter validation.
Collapse
Affiliation(s)
- Agnieszka Kwiatkowska-Miernik
- Centre of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland
| | - Piotr Gustaw Wasilewski
- Centre of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland
| | - Bartosz Mruk
- Centre of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland
| | - Katarzyna Sklinda
- Centre of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland
| | - Maciej Bujko
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland
| | - Jerzy Walecki
- Centre of Radiological Diagnostics, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland
| |
Collapse
|
37
|
Iyer VJ, Donahue JE, Osman MA. Role of scaffold proteins in the heterogeneity of glioblastoma. Cell Commun Signal 2024; 22:477. [PMID: 39375741 PMCID: PMC11457365 DOI: 10.1186/s12964-024-01809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous type of incurable brain cancer with a low survival rate. Intensive ongoing research has identified several potential targets; however, GB is marred by the activation of multiple pathways, and thus common targets are highly sought. The signal regulatory scaffold IQGAP1 is an oncoprotein implicated in GB. IQGAP1 nucleates a myriad of pathways in a contextual manner and modulates many of the targets altered in GB like MAPK, NF-κB, and mTOR/PI3K/Akt1, thus positioning it as a plausible common therapeutic target. Here, we review the targets that are subjects of GB treatment clinical trials and the commonly used animal models that facilitate target identification. We propose a model in which the dysfunction of various IQGAP1 pathways can explain to a larger extent some of the GB heterogeneity and offer a platform for personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - John E Donahue
- Division of Neuropathology, Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mahasin A Osman
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
38
|
Yonk MG, Lim MA, Thompson CM, Tora MS, Lakhina Y, Du Y, Hoang KB, Molinaro AM, Boulis NM, Hassaneen W, Lei K. Improving glioma drug delivery: A multifaceted approach for glioma drug development. Pharmacol Res 2024; 208:107390. [PMID: 39233056 PMCID: PMC11440560 DOI: 10.1016/j.phrs.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Glioma is one of the most common central nervous system (CNS) cancers that can be found within the brain and the spinal cord. One of the pressing issues plaguing the development of therapeutics for glioma originates from the selective and semipermeable CNS membranes: the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). It is difficult to bypass these membranes and target the desired cancerous tissue because the purpose of the BBB and BSCB is to filter toxins and foreign material from invading CNS spaces. There are currently four varieties of Food and Drug Administration (FDA)-approved drug treatment for glioma; yet these therapies have limitations including, but not limited to, relatively low transmission through the BBB/BSCB, despite pharmacokinetic characteristics that allow them to cross the barriers. Steps must be taken to improve the development of novel and repurposed glioma treatments through the consideration of pharmacological profiles and innovative drug delivery techniques. This review addresses current FDA-approved glioma treatments' gaps, shortcomings, and challenges. We then outline how incorporating computational BBB/BSCB models and innovative drug delivery mechanisms will help motivate clinical advancements in glioma drug delivery. Ultimately, considering these attributes will improve the process of novel and repurposed drug development in glioma and the efficacy of glioma treatment.
Collapse
Affiliation(s)
- Marybeth G Yonk
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan A Lim
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA
| | - Charee M Thompson
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; College of Liberal Arts & Sciences, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA.
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
39
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
40
|
Valerius AR, Webb LM, Thomsen A, Lehrer EJ, Breen WG, Campian JL, Riviere-Cazaux C, Burns TC, Sener U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int J Mol Sci 2024; 25:10570. [PMID: 39408897 PMCID: PMC11477105 DOI: 10.3390/ijms251910570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite an established standard of care including surgical resection, radiation therapy, and chemotherapy, GBM unfortunately is associated with a dismal prognosis. Therefore, researchers are extensively evaluating avenues to expand GBM therapy and improve outcomes in patients with GBM. In this review, we provide a broad overview of novel GBM therapies that have recently completed or are actively undergoing study in clinical trials. These therapies expand across medical, surgical, and radiation clinical trials. We additionally review methods for improving clinical trial design in GBM.
Collapse
Affiliation(s)
| | - Lauren M. Webb
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Terry C. Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers (Basel) 2024; 16:3273. [PMID: 39409893 PMCID: PMC11476085 DOI: 10.3390/cancers16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor depicted by a cold tumor microenvironment, low immunogenicity, and limited effective therapeutic interventions. Its location in the brain, a highly immune-selective organ, acts as a barrier, limiting immune access and promoting GBM dissemination, despite therapeutic interventions. Currently, chemotherapy and radiation combined with surgical resection are the standard of care for GBM treatment. Although immune checkpoint blockade has revolutionized the treatment of solid tumors, its observed success in extracranial tumors has not translated into a significant survival benefit for GBM patients. To develop effective immunotherapies for GBM, it is vital to tailor treatments to overcome the numerous immunosuppressive barriers that inhibit T cell responses to these tumors. In this review, we address the unique physical and immunological barriers that make GBM challenging to treat. Additionally, we explore potential therapeutic mechanisms, studied in central nervous system (CNS) and non-CNS cancers, that may overcome these barriers. Furthermore, we examine current and promising immunotherapy clinical trials and immunotherapeutic interventions for GBM. By highlighting the array of challenges T cell-based therapies face in GBM, we hope this review can guide investigators as they develop future immunotherapies for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Noor E. Nader
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Tracy Miller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | - Gary Kohanbash
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | | |
Collapse
|
42
|
Chang CH, Tsai HP, Yen MH, Lin CJ. Methanolic Extract of Cimicifuga foetida Induces G 1 Cell Cycle Arrest and Apoptosis and Inhibits Metastasis of Glioma Cells. Nutrients 2024; 16:3254. [PMID: 39408228 PMCID: PMC11478387 DOI: 10.3390/nu16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is among the most aggressive and challenging brain tumors, with limited treatment options. Cimicifuga foetida, a traditional Chinese medicine, has shown promise due to its bioactive components. This study investigates the anti-glioma effects of a methanolic extract of C. foetida (CF-ME) in GBM cell lines. METHODS The effects of CF-ME and its index compounds (caffeic acid, cimifugin, ferulic acid, and isoferulic acid) on GBM cell viability were assessed using MTT assays on U87 MG, A172, and T98G cell lines. The ability of CF-ME to induce cell cycle arrest, apoptosis, and autophagy and inhibit metastasis was evaluated using flow cytometry, Western blotting, and functional assays. Additionally, the synergistic potential of CF-ME with temozolomide (TMZ) was explored. RESULTS CF-ME significantly reduced GBM cell viability in a dose- and time-dependent manner, induced G1 phase cell cycle arrest, promoted apoptosis via caspase activation, and triggered autophagy. CF-ME also inhibited GBM cell invasion, migration, and adhesion, likely by modulating epithelial-mesenchymal transition (EMT) markers. Combined with TMZ, CF-ME further enhanced reduced GBM cell viability, suggesting a potential synergistic effect. However, the individual index compounds of CF-ME exhibited only modest inhibitory effects, indicating that the full anti-glioma activity may result from the synergistic interactions among its components. CONCLUSIONS CF-ME exhibited potent anti-glioma activity through multiple mechanisms, including cell cycle arrest, apoptosis, autophagy, and the inhibition of metastasis. Combining CF-ME with TMZ further enhanced its therapeutic potential, making it a promising candidate for adjuvant therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Chih-Hsuan Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Ming-Hong Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| |
Collapse
|
43
|
Canella A, Artomov M, Ukhatov A, Rajendran S, Perez P, Saini U, Hedberg J, Cassady K, Rajappa P. Primary murine high-grade glioma cells derived from RCAS/tv-a diffuse glioma model reprogram naive T cells into immunosuppressive regulatory T lymphocytes. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200861. [PMID: 39328291 PMCID: PMC11426037 DOI: 10.1016/j.omton.2024.200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
High-grade gliomas (HGGs) and glioblastomas (GBMs) are the most aggressive and lethal brain tumors. The current standard of care (SOC) includes gross safe surgical resection followed by chemoradiotherapy. The main chemotherapeutic agents are the DNA-alkylating agent temozolomide (TMZ) and adjuvants. Due to the outdated therapeutic protocols and lack of specific treatments, there is an urgent and rising need to improve our understanding of tumor biology and design more effective therapeutic strategies. In vitro models are essential for investigating glioma biology and testing novel therapeutic approaches. While using commercially available and patient-derived glioma cell lines for in vitro studies is common practice, they exhibit several limitations, including failing to maintain the genetic and phenotypic diversity of primary tumors, undergo genetic drift over time, and often lacking the invasive and stem-like characteristics of patient tumors. These limitations can lead to inconsistent and non-reproducible results, hampering translational research progress. In this study, we established a novel primary murine HGG cell line, isolated from an immunocompetent HGG-bearing RCAS/T-va mouse. We characterized the transcriptome and phenotype to ensure that this cell line resembles the nature of HGGs and retains the ability to reprogram primary murine T lymphocytes.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksandr Ukhatov
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Phillip Perez
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Uksha Saini
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jack Hedberg
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Kevin Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
44
|
Sun S, Shyr Z, McDaniel K, Fang Y, Tao D, Chen CZ, Zheng W, Zhu Q. Reversal Gene Expression Assessment for Drug Repurposing, a Case Study of Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-4765282. [PMID: 39315277 PMCID: PMC11419258 DOI: 10.21203/rs.3.rs-4765282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its underlying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration (FDA) approved drugs used for GBM deliver satisfactory survival improvement. This study presents a novel computational pipeline by utilizing gene expression data analysis for GBM for drug repurposing to address the challenges in rare disease drug development, particularly focusing on GBM. The GBM Gene Expression Profile (GGEP) was constructed with multi-omics data to identify drugs with reversal gene expression to GGEP from the Integrated Network-Based Cellular Signatures (iLINCS) database. We prioritized the candidates via hierarchical clustering of their expression signatures and quantification of their reversal strength by calculating two self-defined indices based on the GGEP genes' log2 foldchange (LFCs) that the drug candidates could induce. Among eight prioritized candidates, in-vitro experiments validated Clofarabine and Ciclopirox as highly efficacious in selectively targeting GBM cancer cells. The success of this study illustrated a promising avenue for accelerating drug development by uncovering underlying gene expression effect between drugs and diseases, which can be extended to other rare diseases and non-rare diseases.
Collapse
Affiliation(s)
- Shixue Sun
- NCATS: National Center for Advancing Translational Sciences
| | - Zeenat Shyr
- NCATS: National Center for Advancing Translational Sciences
| | - Kathleen McDaniel
- NCATS ETB: National Center for Advancing Translational Sciences Early Translation Branch
| | - Yuhong Fang
- NCATS: National Center for Advancing Translational Sciences
| | - Dingyin Tao
- NCATS: National Center for Advancing Translational Sciences
| | | | - Wei Zheng
- NCATS: National Center for Advancing Translational Sciences
| | - Qian Zhu
- NCATS: National Center for Advancing Translational Sciences
| |
Collapse
|
45
|
Pérez-Aliacar M, Ayensa-Jiménez J, Ranđelović T, Ochoa I, Doblaré M. Modelling glioblastoma resistance to temozolomide. A mathematical model to simulate cellular adaptation in vitro. Comput Biol Med 2024; 180:108866. [PMID: 39089107 DOI: 10.1016/j.compbiomed.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Drug resistance is one of the biggest challenges in the fight against cancer. In particular, in the case of glioblastoma, the most lethal brain tumour, resistance to temozolomide (the standard of care drug for chemotherapy in this tumour) is one of the main reasons behind treatment failure and hence responsible for the poor prognosis of patients diagnosed with this disease. In this work, we combine the power of three-dimensional in vitro experiments of treated glioblastoma spheroids with mathematical models of tumour evolution and adaptation. We use a novel approach based on internal variables for modelling the acquisition of resistance to temozolomide that was observed in experiments for a group of treated spheroids. These internal variables describe the cell's phenotypic state, which depends on the history of drug exposure and affects cell behaviour. We use model selection to determine the most parsimonious model and calibrate it to reproduce the experimental data, obtaining a high level of agreement between the in vitro and in silico outcomes. A sensitivity analysis is carried out to investigate the impact of each model parameter in the predictions. More importantly, we show how the model is useful for answering biological questions, such as what is the intrinsic adaptation mechanism, or for separating the sensitive and resistant populations. We conclude that the proposed in silico framework, in combination with experiments, can be useful to improve our understanding of the mechanisms behind drug resistance in glioblastoma and to eventually set some guidelines for the design of new treatment schemes.
Collapse
Affiliation(s)
- Marina Pérez-Aliacar
- Mechanical Engineering Department, School of Engineering and Architecture, University of Zaragoza, C/ Maria de Luna, Zaragoza, 50018, Spain; Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain.
| | - Jacobo Ayensa-Jiménez
- Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain; Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, Zaragoza, 50009, Spain.
| | - Teodora Ranđelović
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Ignacio Ochoa
- Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain; Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Manuel Doblaré
- Engineering Research Institute of Aragón (I3A), University of Zaragoza, C/ Mariano Esquillor, Zaragoza, 50018, Spain; Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Nanjing Tech University, China.
| |
Collapse
|
46
|
Bahojb Mahdavi SZ, Pouladi N, Amini M, Baradaran B, Najafi S, Vaghef Mehrabani S, Yari A, Ghobadi Alamdari S, Mokhtarzadeh AA. Let-7a-3p overexpression increases chemosensitivity to carmustine and synergistically promotes autophagy and suppresses cell survival in U87MG glioblastoma cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6903-6918. [PMID: 38587542 DOI: 10.1007/s00210-024-03060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Vaghef Mehrabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | | |
Collapse
|
47
|
Cao B, Huang Y, Chen L, Jia W, Li D, Jiang Y. Soft bioelectronics for diagnostic and therapeutic applications in neurological diseases. Biosens Bioelectron 2024; 259:116378. [PMID: 38759308 DOI: 10.1016/j.bios.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Physical and chemical signals in the central nervous system yield crucial information that is clinically relevant under both physiological and pathological conditions. The emerging field of bioelectronics focuses on the monitoring and manipulation of neurophysiological signals with high spatiotemporal resolution and minimal invasiveness. Significant advances have been realized through innovations in materials and structural design, which have markedly enhanced mechanical and electrical properties, biocompatibility, and overall device performance. The diagnostic and therapeutic potential of soft bioelectronics has been corroborated across a diverse array of pre-clinical settings. This review summarizes recent studies that underscore the developments and applications of soft bioelectronics in neurological disorders, including neuromonitoring, neuromodulation, tumor treatment, and biosensing. Limitations and outlooks of soft devices are also discussed in terms of power supply, wireless control, biocompatibility, and the integration of artificial intelligence. This review highlights the potential of soft bioelectronics as a future platform to promote deciphering brain functions and clinical outcomes of neurological diseases.
Collapse
Affiliation(s)
- Bowen Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States.
| |
Collapse
|
48
|
Barszczewska-Pietraszek G, Czarny P, Drzewiecka M, Błaszczyk M, Radek M, Synowiec E, Wigner-Jeziorska P, Sitarek P, Szemraj J, Skorski T, Śliwiński T. Polθ Inhibitor (ART558) Demonstrates a Synthetic Lethal Effect with PARP and RAD52 Inhibitors in Glioblastoma Cells. Int J Mol Sci 2024; 25:9134. [PMID: 39273083 PMCID: PMC11395082 DOI: 10.3390/ijms25179134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.
Collapse
Affiliation(s)
- Gabriela Barszczewska-Pietraszek
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Małgorzata Drzewiecka
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Maciej Błaszczyk
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 92-151 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| |
Collapse
|
49
|
Jiang C, Sun C, Wang X, Ma S, Jia W, Zhang D. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1359-1374. [PMID: 38381384 PMCID: PMC11300408 DOI: 10.1007/s10278-024-01026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
We aimed to study whether the Bruton's tyrosine kinase (BTK) expression is correlated with the prognosis of patients with high-grade gliomas (HGGs) and predict its expression level prior to surgery, by constructing radiomic models. Clinical and gene expression data of 310 patients from The Cancer Genome Atlas (TCGA) were included for gene-based prognostic analysis. Among them, contrast-enhanced T1-weighted imaging (T1WI + C) from The Cancer Imaging Archive (TCIA) with genomic data was selected from 82 patients for radiomic models, including support vector machine (SVM) and logistic regression (LR) models. Furthermore, the nomogram incorporating radiomic signatures was constructed to evaluate its clinical efficacy. BTK was identified as an independent risk factor for HGGs through univariate and multivariate Cox regression analyses. Three radiomic features were selected to construct the SVM and LR models, and the validation set showed area under curve (AUCs) values of 0.711 (95% CI, 0.598-0.824) and 0.736 (95% CI, 0.627-0.844), respectively. The median survival times of the high Rad_score and low-Rad_score groups based on LR model were 15.53 and 23.03 months, respectively. In addition, the total risk score of each patient was used to construct a predictive nomogram, and the AUCs calculated from the corresponding time-dependent ROC curves were 0.533, 0.659, and 0.767 for 1, 3, and 5 years, respectively. BTK is an independent risk factor associated with poor prognosis in patients, and the radiomic model constructed in this study can effectively and non-invasively predict preoperative BTK expression levels and patient prognosis based on T1WI + C.
Collapse
Affiliation(s)
- Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Chen Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
50
|
Al-Rahbi A, Al-Mahrouqi O, Al-Saadi T. Uses of artificial intelligence in glioma: A systematic review. MEDICINE INTERNATIONAL 2024; 4:40. [PMID: 38827949 PMCID: PMC11140312 DOI: 10.3892/mi.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Glioma is the most prevalent type of primary brain tumor in adults. The use of artificial intelligence (AI) in glioma is increasing and has exhibited promising results. The present study performed a systematic review of the applications of AI in glioma as regards diagnosis, grading, prediction of genotype, progression and treatment response using different databases. The aim of the present study was to demonstrate the trends (main directions) of the recent applications of AI within the field of glioma, and to highlight emerging challenges in integrating AI within clinical practice. A search in four databases (Scopus, PubMed, Wiley and Google Scholar) yielded a total of 42 articles specifically using AI in glioma and glioblastoma. The articles were retrieved and reviewed, and the data were summarized and analyzed. The majority of the articles were from the USA (n=18) followed by China (n=11). The number of articles increased by year reaching the maximum number in 2022. The majority of the articles studied glioma as opposed to glioblastoma. In terms of grading, the majority of the articles were about both low-grade glioma (LGG) and high-grade glioma (HGG) (n=23), followed by HGG/glioblastoma (n=13). Additionally, three articles were about LGG only; two articles did not specify the grade. It was found that one article had the highest sample size among the other studies, reaching 897 samples. Despite the limitations and challenges that face AI, the use of AI in glioma has increased in recent years with promising results, with a variety of applications ranging from diagnosis, grading, prognosis prediction, and reaching to treatment and post-operative care.
Collapse
Affiliation(s)
- Adham Al-Rahbi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Omar Al-Mahrouqi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Tariq Al-Saadi
- Department of Neurosurgery, Khoula Hospital, Muscat 123, Sultanate of Oman
- Department of Neurology and Neurosurgery-Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|