1
|
Han H, Du A, Li J, Han H, Feng P, Zhu Y, Li X, Tian G, Yu H, Zhang B, Liu W, Yuan G. Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review). Oncol Rep 2025; 53:48. [PMID: 40017136 PMCID: PMC11894601 DOI: 10.3892/or.2025.8881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour, characterised by high heterogeneity, aggressiveness and resistance to conventional therapies, leading to poor prognosis for patients. In recent years, with the rapid development of molecular biology and genomics technologies, significant progress has been made in understanding the molecular mechanisms of GBM. This has revealed a complex molecular network involving aberrant key signalling pathways, epigenetic alterations, interactions in the tumour microenvironment and regulation of non‑coding RNAs. Based on these molecular features, novel therapeutic strategies such as targeted therapies, immunotherapy and gene therapy are rapidly evolving and hold promise for improving the outcome of GBM. This review systematically summarises the advances in molecular mechanisms and therapeutic approaches for GBM. It aims to provide new perspectives for the precise diagnosis and personalised treatment of GBM, and to ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Aichao Du
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jinwen Li
- College of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Hongyan Han
- Department of Neurology, Tianshui First People's Hospital, Tianshui, Gansu 741000, P.R. China
| | - Peng Feng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yufeng Zhu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Haijia Yu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Weiguo Liu
- Lanzhou University of Basic Medical Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Nadora D, Ezzati S, Bol B, Aboud O. Serendipity in Neuro-Oncology: The Evolution of Chemotherapeutic Agents. Int J Mol Sci 2025; 26:2955. [PMID: 40243541 PMCID: PMC11988343 DOI: 10.3390/ijms26072955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The development of novel therapeutics in neuro-oncology faces significant challenges, often marked by high costs and low success rates. Despite advances in molecular biology and genomics, targeted therapies have had limited impact on improving patient outcomes in brain tumors, particularly gliomas, due to the complex, multigenic nature of these malignancies. While significant efforts have been made to design drugs that target specific signaling pathways and genetic mutations, the clinical success of these rational approaches remains sparse. This review critically examines the landscape of neuro-oncology drug discovery, highlighting instances where serendipity has led to significant breakthroughs, such as the unexpected efficacy of repurposed drugs and off-target effects that proved beneficial. By exploring historical and contemporary cases, we underscore the role of chance in the discovery of impactful therapies, arguing that embracing serendipity alongside rational drug design may enhance future success in neuro-oncology drug development.
Collapse
Affiliation(s)
- Denise Nadora
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Shawyon Ezzati
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Brandon Bol
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Orwa Aboud
- Department of Neurology, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Buso G, Corvini F, Fusco EM, Messina M, Cherubini F, Laera N, Paini A, Salvetti M, De Ciuceis C, Ritelli M, Venturini M, Chiarelli N, Colombi M, Muiesan ML. Current Evidence and Future Perspectives in the Medical Management of Vascular Ehlers-Danlos Syndrome: Focus on Vascular Prevention. J Clin Med 2024; 13:4255. [PMID: 39064294 PMCID: PMC11278074 DOI: 10.3390/jcm13144255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) is a rare autosomal dominant connective tissue disease resulting from pathogenic variants in the collagen type III alpha 1 chain (COL3A1) gene, encoding type III procollagen. Patients with vEDS present with severe tissue fragility that can result in arterial aneurysm, dissection, or rupture, especially of medium-caliber vessels. Although early reports have indicated a very high mortality rate in affected patients, with an estimated median survival of around 50 years, recent times have seen a remarkable improvement in outcomes in this population. This shift could be related to greater awareness of the disease among patients and physicians, with improved management both in terms of follow-up and treatment of complications. Increasing use of drugs acting on the cardiovascular system may also have contributed to this improvement. In particular, celiprolol, a β1 cardio-selective blocker with a β2-agonist vasodilator effect, has been shown to reduce rates of vascular events in patients with vEDS. However, the evidence on the true benefits and possible mechanisms responsible for the protective effect of celiprolol in this specific setting remains limited. Drugs targeting the extracellular matrix organization and autophagy-lysosome pathways are currently under investigation and could play a role in the future. This narrative review aims to summarize current evidence and future perspectives on vEDS medical treatment, with a specific focus on vascular prevention.
Collapse
Affiliation(s)
- Giacomo Buso
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Federica Corvini
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Elena Maria Fusco
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Massimiliano Messina
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Fabio Cherubini
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Nicola Laera
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Anna Paini
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Massimo Salvetti
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Marco Ritelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy (N.C.)
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Division of Dermatology, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy (N.C.)
| | - Marina Colombi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, 25123 Brescia, Italy (N.C.)
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, Division of Internal Medicine, ASST Spedali Civili Brescia, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
4
|
Saiz-Baggetto S, Dolz-Edo L, Méndez E, García-Bolufer P, Marí M, Bañó MC, Fariñas I, Morante-Redolat JM, Igual JC, Quilis I. A Multimodel Study of the Role of Novel PKC Isoforms in the DNA Integrity Checkpoint. Int J Mol Sci 2023; 24:15796. [PMID: 37958781 PMCID: PMC10650207 DOI: 10.3390/ijms242115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
The protein kinase C (PKC) family plays important regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whereas in mammals, the PKC family comprises nine isoforms. Both Pkc1 and the novel isoform PKCδ are involved in the control of DNA integrity checkpoint activation, demonstrating that this mechanism is conserved from yeast to mammals. To explore the function of PKCδ in a non-tumor cell line, we employed CRISPR-Cas9 technology to obtain PKCδ knocked-out mouse embryonic stem cells (mESCs). This model demonstrated that the absence of PKCδ reduced the activation of the effector kinase CHK1, although it suggested that other isoform(s) might contribute to this function. Therefore, we used yeast to study the ability of each single PKC isoform to activate the DNA integrity checkpoint. Our analysis identified that PKCθ, the closest isoform to PKCδ, was also able to perform this function, although with less efficiency. Then, by generating truncated and mutant versions in key residues, we uncovered differences between the activation mechanisms of PKCδ and PKCθ and identified their essential domains. Our work strongly supports the role of PKC as a key player in the DNA integrity checkpoint pathway and highlights the advantages of combining distinct research models.
Collapse
Affiliation(s)
- Sara Saiz-Baggetto
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Laura Dolz-Edo
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - Ester Méndez
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Pau García-Bolufer
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - Miquel Marí
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - M. Carmen Bañó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Isabel Fariñas
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - José Manuel Morante-Redolat
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Universitat de València, 46100 Burjassot, Spain
| | - J. Carlos Igual
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| | - Inma Quilis
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain; (S.S.-B.); (L.D.-E.); (M.C.B.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain (I.F.); (J.M.M.-R.)
| |
Collapse
|
5
|
Li XP, Guo ZQ, Wang BF, Zhao M. EGFR alterations in glioblastoma play a role in antitumor immunity regulation. Front Oncol 2023; 13:1236246. [PMID: 37601668 PMCID: PMC10436475 DOI: 10.3389/fonc.2023.1236246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the most frequently altered gene in glioblastoma (GBM), which plays an important role in tumor development and anti-tumor immune response. While current molecular targeted therapies against the EGFR signaling pathway and its downstream key molecules have not demonstrated favorable clinical outcomes in GBM. Whereas tumor immunotherapies, especially immune checkpoint inhibitors, have shown durable antitumor responses in many cancers. However, the clinical efficacy is limited in patients carrying EGFR alterations, indicating that EGFR signaling may involve tumor immune response. Recent studies reveal that EGFR alterations not only promote GBM cell proliferation but also influence immune components in the tumor microenvironment (TME), leading to the recruitment of immunosuppressive cells (e.g., M2-like TAMs, MDSCs, and Tregs), and inhibition of T and NK cell activation. Moreover, EGFR alterations upregulate the expression of immunosuppressive molecules or cytokines (such as PD-L1, CD73, TGF-β). This review explores the role of EGFR alterations in establishing an immunosuppressive TME and hopes to provide a theoretical basis for combining targeted EGFR inhibitors with immunotherapy for GBM.
Collapse
Affiliation(s)
| | | | - Bao-Feng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Molecular Characterization of the Dual Effect of the GPER Agonist G-1 in Glioblastoma. Int J Mol Sci 2022; 23:ijms232214309. [PMID: 36430793 PMCID: PMC9695951 DOI: 10.3390/ijms232214309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite conventional treatment, consisting of a chirurgical resection followed by concomitant radio-chemotherapy, the 5-year survival rate is less than 5%. Few risk factors are clearly identified, but women are 1.4-fold less affected than men, suggesting that hormone and particularly estrogen signaling could have protective properties. Indeed, a high GPER1 (G-protein-coupled estrogen receptor) expression is associated with better survival, especially in women who produce a greater amount of estrogen. Therefore, we addressed the anti-tumor effect of the GPER agonist G-1 in vivo and characterized its molecular mechanism of action in vitro. First, the antiproliferative effect of G-1 was confirmed in a model of xenografted nude mice. A transcriptome analysis of GBM cells exposed to G-1 was performed, followed by functional analysis of the differentially expressed genes. Lipid and steroid synthesis pathways as well as cell division processes were both affected by G-1, depending on the dose and duration of the treatment. ANGPTL4, the first marker of G-1 exposure in GBM, was identified and validated in primary GBM cells and patient samples. These data strongly support the potential of G-1 as a promising chemotherapeutic compound for the treatment of GBM.
Collapse
|
7
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
8
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Rodriguez SMB, Staicu GA, Sevastre AS, Baloi C, Ciubotaru V, Dricu A, Tataranu LG. Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer. Int J Mol Sci 2022; 23:ijms23094602. [PMID: 35562993 PMCID: PMC9100635 DOI: 10.3390/ijms23094602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma stem cells (GSCs) are cells with a self-renewal ability and capacity to initiate tumors upon serial transplantation that have been linked to tumor cell heterogeneity. Most standard treatments fail to completely eradicate GSCs, causing the recurrence of the disease. GSCs could represent one reason for the low efficacy of cancer therapy and for the short relapse time. Nonetheless, experimental data suggest that the presence of therapy-resistant GSCs could explain tumor recurrence. Therefore, to effectively target GSCs, a comprehensive understanding of their biology and the survival and developing mechanisms during treatment is mandatory. This review provides an overview of the molecular features, microenvironment, detection, and targeting strategies of GSCs, an essential information required for an efficient therapy. Despite the outstanding results in oncology, researchers are still developing novel strategies, of which one could be targeting the GSCs present in the hypoxic regions and invasive edge of the glioblastoma.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Carina Baloi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
- Correspondence:
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
- Department 6—Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
10
|
Bi Y, Wu ZH, Cao F. Prognostic value and immune relevancy of a combined autophagy-, apoptosis- and necrosis-related gene signature in glioblastoma. BMC Cancer 2022; 22:233. [PMID: 35241019 PMCID: PMC8892733 DOI: 10.1186/s12885-022-09328-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prognostic implications in GBM patients. Methods Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognostic signature. Kaplan–Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external validation. Finally, we investigated the differences in the immune microenvironment between different prognostic groups and predicted potential compounds targeting each group. Results A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of PDCD1LG2, CD86, CD48 and IDO1. Conclusion Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide patients’ selection for preferential use of immunotherapy in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09328-3.
Collapse
Affiliation(s)
- Ying Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Zhu J, Su J. Alterations of the Gut Microbiome in Recurrent Malignant Gliomas Patients Received Bevacizumab and Temozolomide Combination Treatment and Temozolomide Monotherapy. Indian J Microbiol 2022; 62:23-31. [PMID: 35068600 PMCID: PMC8758882 DOI: 10.1007/s12088-021-00962-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
This case-control study explored compositions of gut microbiome in recurrent malignant gliomas patients who had received bevacizumab and Temozolomide combination treatment and Temozolomide monotherapy. We investigated gut microbiota communities in feces of 29 recurrent malignant gliomas patients received combination treatment with bevacizumab and Temozolomide (Group 1) and monotherapy with Temozolomide alone (Group 2). We took advantage of the high-throughput Illumina Miseq sequencing technology by targeting the third and fourth hypervariable (V3-V4) regions of the 16S ribosomal RNA (rRNA) gene. We found that the structures and richness of the fecal microbiota in Group 1 were different from Group 2 with LEfSe analysis. The fecal microbiota in both Group 1 and Group 2 were mainly composed by Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. However, Group 1 patients had higher relative abundance of Firmicutes, Bacteroidetes, Actinobacteria and lower relative abundance of Bacteroidetes and Cyanobacteria in their fecal microbiota than that in Group 2 patients. To evaluate bevacizumab involved post-treatment state of the fecal microbiota profile, we used random forest predictive model and ensembled decision trees with an AUC of 0.54. This study confirmed that the gut microbiota was different in recurrent malignant gliomas patients received the combination therapy of bevacizumab and Temozolomide compared with Temozolomide monotherapy. Our discover can help better understand the influence of bevacizumab related treatment on recurrent malignant gliomas patients. Therefore, this finding may also support the potentially therapeutic options for recurrent malignant gliomas patients such as fecal microbiota transplant. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00962-2.
Collapse
Affiliation(s)
- Junwei Zhu
- Department of General Practice, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang Province China
| | - Jun Su
- Department of Radiology, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang Province China
| |
Collapse
|
12
|
Magnolol Induces the Extrinsic/Intrinsic Apoptosis Pathways and Inhibits STAT3 Signaling-Mediated Invasion of Glioblastoma Cells. Life (Basel) 2021; 11:life11121399. [PMID: 34947930 PMCID: PMC8706091 DOI: 10.3390/life11121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of malignant brain tumor, with poor prognosis; the efficacy of current standard therapy for GBM remains unsatisfactory. Magnolol, an herbal medicine from Magnolia officinalis, exhibited anticancer properties against many types of cancers. However, whether magnolol suppresses GBM progression as well as its underlying mechanism awaits further investigation. In this study, we used the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay, apoptosis marker analysis, transwell invasion and wound-healing assays to identify the effects of magnolol on GBM cells. We also validated the potential targets of magnolol on GBM with the GEPIA (Gene Expression Profiling Interactive Analysis) and Western blotting assay. Magnolol was found to trigger cytotoxicity and activate extrinsic/intrinsic apoptosis pathways in GBM cells. Both caspase-8 and caspase-9 were activated by magnolol. In addition, GEPIA data indicated the PKCδ (Protein kinase C delta)/STAT3 (Signal transducer and activator of transcription 3) signaling pathway as a potential target of GBM. Magnolol effectively suppressed the phosphorylation and nuclear translocation of STAT3 in GBM cells. Meanwhile, tumor invasion and migration ability and the associated genes, including MMP-9 (Matrix metalloproteinase-9) and uPA (Urokinase-type plasminogen activator), were all diminished by treatment with magnolol. Taken together, our results suggest that magnolol-induced anti-GBM effect may be associated with the inactivation of PKCδ/STAT3 signaling transduction.
Collapse
|