1
|
Yang B, Xu Y, Yan F, Peng C, Song Y, Han S, Wang H. Identifying nexilin as a central gene in neutrophil-driven abdominal aortic aneurysm pathogenesis. Mol Med 2025; 31:120. [PMID: 40140755 PMCID: PMC11948811 DOI: 10.1186/s10020-025-01157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVES Abdominal aortic aneurysm (AAA) is an inflammation-driven disease in which neutrophil infiltration is critical to its progression. This study aims to explore the molecular mechanisms behind neutrophil infiltration in AAA and identify key regulatory genes. METHODS We utilized weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis to compare AAA and healthy abdominal aortic tissues. Functional enrichment analysis and a protein-protein interaction (PPI) network were constructed to understand gene functions. Machine learning algorithms were applied to identify key hub genes, followed by in vivo validation using an ApoE-/- mouse model. RESULTS Neutrophils, NK cells, and pDCs were significantly increased in AAA tissues. WGCNA identified 234 genes associated with neutrophil infiltration, of which 39 were significantly differentially expressed. Functional enrichment analysis highlighted roles in actin-related processes and pathways. Nexilin (NEXN) was consistently identified as a key hub gene negatively correlated with immune cell infiltration. In vivo validation confirmed that NEXN inhibits AAA progression in ApoE-/- mice by regulating immune cell infiltration. CONCLUSION NEXN plays a crucial role in modulating neutrophil infiltration in AAA. These findings provide new molecular insights into AAA pathogenesis and suggest NEXN as a potential target for AAA therapy.
Collapse
Affiliation(s)
- Bohan Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China
| | - Yiyan Xu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China
| | - Fengfei Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China
| | - Cheng Peng
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China
| | - Ye Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Song Han
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China
| | - Haiyang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiang West Road, Yuexiu District, Guangzhou, China.
| |
Collapse
|
2
|
Zeng L, Lu X, Huang Y, Tu Q, He Y, Fang Z, Nie S, Huang Y, Yu M, Min X, Zhang C, Yu J, Zhang L. GPER1/ACACB are potential target genes associated with intracranial aneurysm and vascular endothelial cell senescence. Neurosurg Rev 2025; 48:321. [PMID: 40131497 DOI: 10.1007/s10143-025-03489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
The incidence of intracranial aneurysms (IAs) is markedly elevated in postmenopausal women compared to men and premenopausal women, a disparity historically linked to declining estrogen levels. Emerging evidence, however, suggests that the expression and functional roles of estrogen receptors (ERs), including ERα, ERβ, and GPER1, in vascular tissues may implicate estrogen-independent pathways in vascular aging and related pathologies. An integrative bioinformatics approach, combining three IA datasets (GSE75436, GSE122897, GSE54083) and two vascular endothelial cell senescence (VECS) datasets (GSE214476, GSE102397) from the Gene Expression Omnibus (GEO) database, was employed to investigate this hypothesis and define shared molecular mechanisms. This cross-disease differential expression analysis identified 452 significantly downregulated genes, suggesting conserved pathogenic pathways in IA and VECS. Among ERs, GPER1 was uniquely downregulated in both conditions. Subsequent weighted gene co-expression network analysis and subsequent module clustering revealed ACACB as a hub gene co-expressed with GPER1 and inversely correlated with IA and VECS progression. In vitro validation confirmed that GPER1 expression was reduced during VECS and that GPER1 silencing decreased ACACB expression and accelerated endothelial senescence, supporting its estrogen-independent role in vascular homeostasis. Computational pharmacological screening further identified PD0325901, SCH772984, and selumetinib as potential therapeutic agents targeting both GPER1 and ACACB, offering a dual-pathway therapeutic strategy. The identification of GPER1 and ACACB as potential target genes associated with IA and VECS provides a framework for developing therapies that circumvent hormone dependency, addressing an unmet need in the treatment of IA and age-related vascular pathologies.
Collapse
Affiliation(s)
- Lang Zeng
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuanzhen Lu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Yuzhen Huang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qin Tu
- Department of Neurosurgery, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Yongqi He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ziwei Fang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuyi Nie
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Huang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Maling Yu
- Department of Neurosurgery, The Third Hospital of Wuhan, Wuhan, Hubei, China
| | - Xiaoli Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiasheng Yu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Le Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Cingiz MÖ. k- Strong Inference Algorithm: A Hybrid Information Theory Based Gene Network Inference Algorithm. Mol Biotechnol 2024; 66:3213-3225. [PMID: 37950851 DOI: 10.1007/s12033-023-00929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023]
Abstract
Gene networks allow researchers to understand the underlying mechanisms between diseases and genes while reducing the need for wet lab experiments. Numerous gene network inference (GNI) algorithms have been presented in the literature to infer accurate gene networks. We proposed a hybrid GNI algorithm, k-Strong Inference Algorithm (ksia), to infer more reliable and robust gene networks from omics datasets. To increase reliability, ksia integrates Pearson correlation coefficient (PCC) and Spearman rank correlation coefficient (SCC) scores to determine mutual information scores between molecules to increase diversity of relation predictions. To infer a more robust gene network, ksia applies three different elimination steps to remove redundant and spurious relations between genes. The performance of ksia was evaluated on microbe microarrays database in the overlap analysis with other GNI algorithms, namely ARACNE, C3NET, CLR, and MRNET. Ksia inferred less number of relations due to its strict elimination steps. However, ksia generally performed better on Escherichia coli (E.coli) and Saccharomyces cerevisiae (yeast) gene expression datasets due to F- measure and precision values. The integration of association estimator scores and three elimination stages slightly increases the performance of ksia based gene networks. Users can access ksia R package and user manual of package via https://github.com/ozgurcingiz/ksia .
Collapse
Affiliation(s)
- Mustafa Özgür Cingiz
- Computer Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Campus, Yildirim, 16310, Bursa, Turkey.
| |
Collapse
|
4
|
Kaschina E. Aortic Aneurysm: Finding the Right Target. Biomedicines 2023; 11:biomedicines11051345. [PMID: 37239016 DOI: 10.3390/biomedicines11051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
This Special Issue of Biomedicines highlights many important scientific findings in aneurysm research [...].
Collapse
Affiliation(s)
- Elena Kaschina
- Cardiovascular-Metabolic-Renal (CMR)-Research Center, Institute of Pharmacology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin,10115 Berlin, Germany
| |
Collapse
|
5
|
Cheng S, Liu Y, Jing Y, Jiang B, Wang D, Chu X, Jia L, Xin S. Identification of key monocytes/macrophages related gene set of the early-stage abdominal aortic aneurysm by integrated bioinformatics analysis and experimental validation. Front Cardiovasc Med 2022; 9:950961. [PMID: 36186997 PMCID: PMC9515382 DOI: 10.3389/fcvm.2022.950961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Abdominal aortic aneurysm (AAA) is a lethal peripheral vascular disease. Inflammatory immune cell infiltration is a central part of the pathogenesis of AAA. It’s critical to investigate the molecular mechanisms underlying immune infiltration in early-stage AAA and look for a viable AAA marker. Methods In this study, we download several mRNA expression datasets and scRNA-seq datasets of the early-stage AAA models from the NCBI-GEO database. mMCP-counter and CIBERSORT were used to assess immune infiltration in early-stage experimental AAA. The scRNA-seq datasets were then utilized to analyze AAA-related gene modules of monocytes/macrophages infiltrated into the early-stage AAA by Weighted Correlation Network analysis (WGCNA). After that, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis for the module genes was performed by ClusterProfiler. The STRING database was used to create the protein-protein interaction (PPI) network. The Differentially Expressed Genes (DEGs) of the monocytes/macrophages were explored by Limma-Voom and the key gene set were identified. Then We further examined the expression of key genes in the human AAA dataset and built a logistic diagnostic model for distinguishing AAA patients and healthy people. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) and Enzyme Linked Immunosorbent Assay (ELISA) were performed to validate the gene expression and serum protein level between the AAA and healthy donor samples in our cohort. Results Monocytes/macrophages were identified as the major immune cells infiltrating the early-stage experimental AAA. After pseudocell construction of monocytes/macrophages from scRNA-seq datasets and WGCNA analysis, four gene modules from two datasets were identified positively related to AAA, mainly enriched in Myeloid Leukocyte Migration, Collagen-Containing Extracellular matrix, and PI3K-Akt signaling pathway by functional enrichment analysis. Thbs1, Clec4e, and Il1b were identified as key genes among the hub genes in the modules, and the high expression of Clec4e, Il1b, and Thbs1 was confirmed in the other datasets. Then, in human AAA transcriptome datasets, the high expression of CLEC4E, IL1B was confirmed and a logistic regression model based on the two gene expressions was built, with an AUC of 0.9 in the train set and 0.79 in the validated set. Additionally, in our cohort, we confirmed the increased serum protein levels of IL-1β and CLEC4E in AAA patients as well as the increased expression of these two genes in AAA aorta samples. Conclusion This study identified monocytes/macrophages as the main immune cells infiltrated into the early-stage AAA and constructed a logistic regression model based on monocytes/macrophages related gene set. This study could aid in the early diagnostic of AAA.
Collapse
Affiliation(s)
- Shuai Cheng
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Yuanlin Liu
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Ding Wang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Xiangyu Chu
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Longyuan Jia
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Pathogenesis, Prevention, and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
- Regenerative Medicine Research Center of China Medical University, Shenyang, China
- *Correspondence: Shijie Xin,
| |
Collapse
|
6
|
Tang Q, Song M, Zhao R, Han X, Deng L, Xue H, Li W, Li G. Comprehensive RNA Expression Analysis Revealed Biological Functions of Key Gene Sets and Identified Disease-Associated Cell Types Involved in Rat Traumatic Brain Injury. J Clin Med 2022; 11:jcm11123437. [PMID: 35743506 PMCID: PMC9224987 DOI: 10.3390/jcm11123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide public health concern without major therapeutic breakthroughs over the past decades. Developing effective treatment options and improving the prognosis of TBI depends on a better understanding of the mechanisms underlying TBI. This study performed a comprehensive analysis of 15 RNA expression datasets of rat TBIs from the GEO database. By integrating the results from the various analyses, this study investigated the biological processes, pathways, and cell types associated with TBI and explored the activity of these cells during various TBI phases. The results showed the response to cytokine, inflammatory response, bacteria-associated response, metabolic and biosynthetic processes, and pathways of neurodegeneration to be involved in the pathogenesis of TBI. The cellular abundance of microglia, perivascular macrophages (PM), and neurons were found to differ after TBI and at different times postinjury. In conclusion, immune- and inflammation-related pathways, as well as pathways of neurodegeneration, are closely related to TBI. Microglia, PM, and neurons are thought to play roles in TBI with different activities that vary by phase of TBI.
Collapse
Affiliation(s)
- Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Mengmeng Song
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan 250012, China;
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
- Department of Neurosurgery, Children’s Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Weiguo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
- Correspondence:
| |
Collapse
|
7
|
Identification of the Key Genes and Potential Therapeutic Compounds for Abdominal Aortic Aneurysm Based on a Weighted Correlation Network Analysis. Biomedicines 2022; 10:biomedicines10051052. [PMID: 35625787 PMCID: PMC9138830 DOI: 10.3390/biomedicines10051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background: There is still an unmet need for therapeutic drugs for patients with an abdominal aortic aneurysm (AAA), especially for candidates unsuitable for surgical or interventional repair. Therefore, the purpose of this in silico study is to identify significant genes and regulatory mechanisms in AAA patients to predicate the potential therapeutic compounds for significant genes. Methods: The GSE57691 dataset was obtained from Gene Expression Omnibus (GEO) and used to identify the differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA). The biological function of DEGs was determined using gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). AAA-related genes were obtained from the Comparative Toxicogenomics Database (CTD) using the keywords: aortic aneurysm and abdominal. The hub genes in AAA were obtained by overlapping DEGs, WGCNA-based hub genes, and CTD-based genes. The diagnostic values of hub genes were determined using ROC curve analysis. Hereby, a TF-miRNA-hub gene network was constructed based on the miRnet database. Using these data, potential therapeutic compounds for the therapy of AAA were predicted based on the Drug Gene Interaction Database (DGIdb). Results: A total of 218 DEGs (17 upregulated and 201 downregulated) and their biological function were explored; 4093 AAA-related genes were derived by text mining. Three hub modules and 144 hub genes were identified by WGCNA. asparagine synthetase (ASNS), axin-related protein 2 (AXIN2), melanoma cell adhesion molecule (MCAM), and the testis-specific Y-encoded-like protein 1 (TSPYL1) were obtained as intersecting hub genes and the diagnostic values were confirmed with ROC curves. As potential compounds targeting the hub genes, asparaginase was identified as the target compound for ASNS. Prednisolone and abiraterone were identified as compounds targeting TSPYL1. For MCAM and TSPYL1, no potential therapeutic compound could be predicted. Conclusion: Using WGCNA analysis and text mining, pre-existing gene expression data were used to provide novel insight into potential AAA-related protein targets. For two of these targets, compounds could be predicted.
Collapse
|