1
|
Papareddy P, Herwald H. From immune activation to disease progression: Unraveling the complex role of Serum Amyloid A proteins. Cytokine Growth Factor Rev 2025:S1359-6101(25)00043-7. [PMID: 40240198 DOI: 10.1016/j.cytogfr.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Serum Amyloid A (SAA) proteins are critical mediators of immune activation and metabolic regulation, bridging the acute-phase response with long-term disease dynamics. Once considered mere biomarkers of inflammation, emerging research has revealed their central role in orchestrating immune responses, lipid metabolism, and tissue remodeling. SAA proteins display context-dependent functions: they promote immune defense and tissue regeneration in some conditions, while exacerbating chronic inflammation and disease progression in others. Recent studies highlight the intricate interplay between SAA isoforms, pattern recognition receptors, and metabolic pathways, with implications for autoimmune diseases, metabolic disorders, and inflammatory pathologies. Despite their well-documented role in acute inflammation, the therapeutic potential of SAA proteins remains underexplored. Ongoing research aims to dissect their multifaceted functions and isoform-specific effects, paving the way for novel diagnostic and therapeutic strategies in immune-mediated diseases.
Collapse
Affiliation(s)
- Praveen Papareddy
- Department of Laboratory Medicine Biomedical Center (BMC) Lund University, BMC, Floor C14, Lund 22184, Sweden.
| | - Heiko Herwald
- Department of Laboratory Medicine Biomedical Center (BMC) Lund University, BMC, Floor C14, Lund 22184, Sweden.
| |
Collapse
|
2
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
3
|
Yin Y, Li X, Zhang X, Yuan X, You X, Wu J. Inhibition of Extracellular Signal-Regulated Kinase Activity Improves Cognitive Function in Mice Subjected to Myocardial Infarction. Cardiovasc Toxicol 2024; 24:766-775. [PMID: 38850470 DOI: 10.1007/s12012-024-09877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Cognitive impairment is a commonly observed complication following myocardial infarction; however, the underlying mechanisms are still not well understood. The most recent research suggests that extracellular signal-regulated kinase (ERK) plays a critical role in the development and occurrence of cognitive dysfunction-related diseases. This study aims to explore whether the ERK inhibitor U0126 targets the ERK/Signal Transducer and Activator of Transcription 1 (STAT1) pathway to ameliorate cognitive impairment after myocardial infarction. To establish a mouse model of myocardial infarction, we utilized various techniques including Echocardiography, Hematoxylin-eosin (HE) staining, Elisa, Open field test, Elevated plus maze test, and Western blot analysis to assess mouse cardiac function, cognitive function, and signal transduction pathways. For further investigation into the mechanisms of cognitive function and signal transduction, we administered the ERK inhibitor U0126 via intraperitoneal injection. Reduced total distance and activity range were observed in mice subjected to myocardial infarction during the open field test, along with decreased exploration of the open arms in the elevated plus maze test. However, U0126 treatment exhibited a significant improvement in cognitive decline, indicating a protective effect through the inhibition of the ERK/STAT1 signaling pathway. Hence, this study highlights the involvement of the ERK/STAT1 pathway in regulating cognitive dysfunction following myocardial infarction and establishes U0126 as a promising therapeutic target.
Collapse
Affiliation(s)
- Yibo Yin
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, No. 241 West Huaihai Rd., Shanghai, China
| | - Xin Li
- School of Medical Instrument and Food Engineering USST, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaoxua Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, 200444, China
| | - Xinru Yuan
- School of Medicine, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, 200444, China
| | - Xingji You
- School of Medicine, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, 200444, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, No. 241 West Huaihai Rd., Shanghai, China.
- School of Medical Instrument and Food Engineering USST, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Tang TZ, Zhao Y, Agarwal D, Tharzeen A, Patrikeev I, Zhang Y, DeJesus J, Bossmann SH, Natarajan B, Motamedi M, Szczesny B. Serum amyloid A and mitochondrial DNA in extracellular vesicles are novel markers for detecting traumatic brain injury in a mouse model. iScience 2024; 27:108932. [PMID: 38323004 PMCID: PMC10844832 DOI: 10.1016/j.isci.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential use of circulating extracellular vesicles' (EVs) DNA and protein content as biomarkers for traumatic brain injury (TBI) in a mouse model. Despite an overall decrease in EVs count during the acute phase, there was an increased presence of exosomes (CD63+ EVs) during acute and an increase in microvesicles derived from microglia/macrophages (CD11b+ EVs) and astrocytes (ACSA-2+ EVs) in post-acute TBI phases, respectively. Notably, mtDNA exhibited an immediate elevation post-injury. Neuronal (NFL) and microglial (Iba1) markers increased in the acute, while the astrocyte marker (GFAP) increased in post-acute TBI phases. Novel protein biomarkers (SAA, Hp, VWF, CFD, CBG) specific to different TBI phases were also identified. Biostatistical modeling and machine learning identified mtDNA and SAA as decisive markers for TBI detection. These findings emphasize the importance of profiling EVs' content and their dynamic release as an innovative diagnostic approach for TBI in liquid biopsies.
Collapse
Affiliation(s)
- Tony Z. Tang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Deepesh Agarwal
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Aabila Tharzeen
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Igor Patrikeev
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuanyi Zhang
- Department of Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jana DeJesus
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Regulation of Atherosclerosis by Toll-Like Receptor 4 Induced by Serum Amyloid 1: A Systematic In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4887593. [PMID: 36158875 PMCID: PMC9499805 DOI: 10.1155/2022/4887593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the effects of serum amyloid 1 (SAA1) on activation of endothelial cells, formation of foam cells, platelet aggregation, and monocyte/platelet adhesion to endothelial cells. The effect of SAA1 on the inflammatory activation of endothelial cells was investigated by detecting the expression of inflammatory factors and adhesion molecules. The role of SAA1 in formation of foam cells was verified by detecting lipid deposition and expression of molecules related to the formation of foam cells. After platelets were stimulated by SAA1, the aggregation rate was evaluated to determine the effect of SAA1 on platelet aggregation. Monocytes/platelets were cocultured with human umbilical vein endothelial cells (HUVECs) pretreated with or without SAA1 to determine whether SAA1 affected monocyte/platelet adhesion to endothelial cells. By inhibiting toll-like receptor 4 (TLR4) function, we further identified the role of TLR4 signaling in SAA1-mediated endothelial inflammatory activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs. SAA1 significantly increased the expression of adhesion molecules and inflammatory factors in HUVECs. Moreover, SAA1 also promoted lipid deposition and the expression of inflammatory factors and low-density lipoprotein receptor-1 (LOX-1) in THP-1-derived macrophages. In addition, SAA1 induced platelet aggregation and enhanced monocyte/platelet adhesion to HUVECs. However, the TLR4 antagonist significantly inhibited SAA1-induced endothelial cell activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs and downregulated the expression of myeloid differentiation factor 88 (MyD88), phosphor-inhibitor of nuclear factor κB kinase subunit α/β (P-IKKα/β), phospho-inhibitor of nuclear factor κB subunit α (P-IKBα), and phosphorylation of nuclear transcription factor-κB p65 (P-p65) in SAA1-induced HUVECs and THP-1 cells. Conclusively, it is speculated that SAA1 promotes atherosclerosis through enhancing endothelial cell activation, platelet aggregation, foam-cell formation, and monocyte/platelet adhesion to endothelial cells. These biological functions of SAA1 may depend on the activation of TLR4-related nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
6
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
7
|
Fei X, Dou YN, Lv W, Ding B, Wei J, Wu X, He X, Fei Z, Fei F. TLR4 deletion improves cognitive brain function and structure in aged mice. Neuroscience 2022; 492:1-17. [DOI: 10.1016/j.neuroscience.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
|
8
|
Maile R, Willis ML, Herring LE, Prevatte A, Mahung C, Cairns B, Wallet S, Coleman LG. Burn Injury Induces Proinflammatory Plasma Extracellular Vesicles That Associate with Length of Hospital Stay in Women: CRP and SAA1 as Potential Prognostic Indicators. Int J Mol Sci 2021; 22:10083. [PMID: 34576246 PMCID: PMC8468249 DOI: 10.3390/ijms221810083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Severe burn injury is a devastating form of trauma that results in persistent immune dysfunction with associated morbidity and mortality. The underlying drivers of this immune dysfunction remain elusive, and there are no prognostic markers to identify at-risk patients. Extracellular vesicles (EVs) are emerging as drivers of immune dysfunction as well as biomarkers. We investigated if EVs after burn injury promote macrophage activation and assessed if EV contents can predict length of hospital stay. EVs isolated early from mice that received a 20% total body surface area (TBSA) burn promoted proinflammatory responses in cultured splenic macrophages. Unbiased LC-MS/MS proteomic analysis of early EVs (<72 h post-injury) from mice and humans showed some similarities including enrichment of acute phase response proteins such as CRP and SAA1. Semi-unbiased assessment of early human burn patient EVs found alterations consistent with increased proinflammatory signaling and loss of inhibition of CRP expression. In a sample of 50 patients with large burn injury, EV SAA1 and CRP were correlated with TBSA injury in both sexes and were correlated with length of hospital stay in women. These findings suggest that EVs are drivers of immune responses after burn injury and their content may predict hospital course.
Collapse
Affiliation(s)
- Robert Maile
- Curriculum in Toxicology and Environmental Medicine, North Carolina Jaycee Burn Center, Department of Surgery, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (R.M.); (B.C.)
| | - Micah L. Willis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Laura E. Herring
- Department of Pharmacology, School of Medicine, UNC Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.E.H.); (A.P.)
| | - Alex Prevatte
- Department of Pharmacology, School of Medicine, UNC Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.E.H.); (A.P.)
| | - Cressida Mahung
- North Carolina Jaycee Burn Center, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Bruce Cairns
- Curriculum in Toxicology and Environmental Medicine, North Carolina Jaycee Burn Center, Department of Surgery, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (R.M.); (B.C.)
| | - Shannon Wallet
- Department of Microbiology and Immunology, Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|