1
|
Huang SE, Hu KF, Lin MX, Tseng CJ, Wu BN, Dai ZK, Hsu JH, Yeh JL. Xanthine Derivative KMUP-3 Alleviates Periodontal Bone Resorption by Inhibiting Osteoclastogenesis and Macrophage Pyroptosis. J Periodontal Res 2025. [PMID: 40007249 DOI: 10.1111/jre.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
AIM This study investigated the function effects of KMUP-3, a self-developed synthetic xanthine-based derivative, in suppressing Porphyromonas gingivalis (Pg-LPS)-aggravated osteoclastogenesis and pyroptosis as a potential treatment for periodontitis. METHODS In vitro, the effects of Pg-LPS and KMUP-3 on osteoclast formation and macrophage pyroptosis were investigated using the receptor activator of nuclear factor-κB ligand (RANKL)-primed RAW264.7 macrophages. In vivo, the therapeutic effects of KMUP-3 were evaluated in a model of experimental periodontitis induced by gingival ligature placement. RESULTS We reveal that KMUP-3 suppressed osteoclastogenesis, inducible nitric oxide synthase activation, and reduced nitric oxide production enhanced by Pg-LPS in RANKL-primed RAW264.7 cells while also decreasing TLR4/NF-κB p65 pathway activation and decreased pro-inflammatory cytokine production; moreover, Pg-LPS promoted NLRP3 activation and exacerbated pyroptosis induction effects that were abolished by KMUP-3. Finally, KMUP-3 ameliorated alveolar bone loss and IL-1β levels in the gingival crevicular fluid in the rat ligature periodontitis model. CONCLUSIONS Our study demonstrated that KMUP-3 attenuates Pg-LPS-enhanced osteoclastogenesis and macrophage pyroptosis. Notably, KMUP-3 alleviates alveolar bone loss in experimental periodontitis rats and thus suggests its certain role in safeguarding against periodontal bone resorption.
Collapse
Affiliation(s)
- Shang-En Huang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Fang Hu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Meng-Xuan Lin
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Thote S, Mourya A, Arya S, Singh H, Kumar P, Guru SK, Madan J. Artemisinin emulgel ameliorates cartilage degradation in knee osteoarthritis: in vitro and in vivo studies. Ther Deliv 2024; 15:939-955. [PMID: 39503537 PMCID: PMC11583592 DOI: 10.1080/20415990.2024.2418281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Aim: Laboratory scale-up of artemisinin-loaded emulgel (ART-emulgel) was carried out and characterized for therapeutic performance in osteoarthritis (OA).Materials & methods: The solubility of ART in various oils, surfactants and co-surfactants were screened for construction of pseudo ternary phase diagram (TPD), followed by scale-up of artemisinin loaded nanoemulsion (ART-NE). ART-NE was amalgamated with Carbopol Ultrez 10-NF to prepare ART-emulgel that was later characterized in vitro and in vivo to analyze therapeutic efficacy in monosodium-iodoacetate (MIA) induced knee OA.Results: The droplet diameter of ART-NE was estimated to be 104.3 ± 2.593 nm with a polydispersity index of 0.245 ± 0.019 in addition to ζ-potential of 0.434 ± 0.028 mV. Steady-state flux and permeability coefficient for ART-emulgel were estimated to be 0.651 ± 0.031 µg.cm2/h and 0.245 ± 0.011 cm/h, respectively. ART-emulgel demonstrated 43.18% reduction in COX-2 level; 52.28% drop in IL-1β, and 88.78% alleviation of Tumor Necrosis Factor-α (TNF-α) level when compared with monosodium-iodoacetate induced OA rats. ART-emulgel and injectable ART (intra-articular; I.A) portrayed minor synovial erosion compared with blank and diclofenac emulgel. Histopathological evidences indicated restoration of cartilage integrity followed by reduction of OARSI scores in ART-emulgel when compared with disease control animals.Conclusion: ART-emulgel is a potential dosage form for translating into a clinically viable product for the management of OA.
Collapse
Affiliation(s)
- Samiksha Thote
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Prashanth Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Hu C, Zeng D, Huang Y, Deng Q, Liu S, Zhou W, Zhou W. Sodium Butyrate Ameliorates Atopic Dermatitis-Induced Inflammation by Inhibiting HDAC3-Mediated STAT1 and NF-κB Pathway. Inflammation 2024; 47:989-1001. [PMID: 38159175 DOI: 10.1007/s10753-023-01955-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
A topic dermatitis (AD) is a common chronic and recurrent skin disorder. The protective effects of sodium butyrate (NaB), a metabolite of short-chain fatty acid breakdown by the gut microbiota, have been widely reported in numerous inflammatory diseases. However, the effect of NaB treatment alone on AD has not been reported. In the current study, AD was induced in BALB/c mice with 2,4-dinitrochlorobenzene (DNCB) for 28 days with NaB (200 mg/kg) treatment by gavage. NaB attenuated AD-induced skin bleeding, scarring, dryness, abrasions and erosions. In addition, NaB inhibited inflammatory cells infiltration and attenuated the expression of inflammatory cytokines and chemokines. Mechanistically, NaB reduced histone deacetylase 3 (HDAC3) expression and NF-κB p65 nuclear translocation by increasing the lysine acetylation levels of STAT1 and NF-κB p65 in AD. Taken together, our study suggests that NaB inhibits inflammatory mediators and ameliorates AD by inhibiting HDAC3 expression, thereby upregulating STAT1 and NF-κB p65 lysine acetylation levels and reducing NF-κB p65 nuclear translocation. Therefore, this study provides a new theoretical basis for NaB in the treatment of AD.
Collapse
Affiliation(s)
- Chaoqun Hu
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, 400014, China
| | - Dan Zeng
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China
| | - Yunxia Huang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qian Deng
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, 400014, China
| | - Shunan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China
| | - Wei Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, 400014, China.
| |
Collapse
|
4
|
Chun JM, Nam H, Lee JH, Seo YH, Kim HS, Moon BC, Park JH. Chondroprotective effects of Protaetia brevitarsis seulensis larvae as an edible insect on osteoarthritis in mice. Food Sci Nutr 2023; 11:7887-7899. [PMID: 38107146 PMCID: PMC10724628 DOI: 10.1002/fsn3.3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic joint inflammatory disease characterized by progressive destruction of the articular cartilage, bone remodeling, and excessive chronic pain. Most therapeutic approaches do not rescue the progression of OA effectively or provide relief of symptoms. Protaetia brevitarsis seulensis larva (PBSL), which is attracting attention, is an edible insect with very high nutritional value and herbal medicine for the treatment of blood stasis, hepatic disease, and various inflammatory diseases. However, the effect of PBSL on OA has not yet been investigated. This study aimed to demonstrate the effects of PBSL water extract on the progression of OA using monosodium iodoacetate (MIA)-induced mice and SW1353 chondrocytes or murine macrophages. We injected MIA into the intraarticular area of mice following pretreatment with either saline or PBSL (200 mg/kg) for 2 weeks, and then locomotor activity, microcomputed tomography and histopathological analysis, quantitative reverse transcriptase-polymerase chain reaction analysis, and western blot analysis were performed. To determine the molecular effects of PBSL, we used interleukin-1β (IL-1β)-induced SW1353 chondrosarcoma or lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with PBSL diminished the symptoms of OA. Physical activity, articular cartilage damage, and the generation of microfractures were rescued by pretreatment with PBSL in the mouse model. Pretreatment with PBSL suppressed the progress of OA through the regulation of articular cartilage degradation genes and inflammation in both in vivo and in vitro models. Our results demonstrated that PBSL has value as edible insect that can be used in the development of functional foods for OA.
Collapse
Affiliation(s)
- Jin Mi Chun
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Hyeon‐Hwa Nam
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Ji Hye Lee
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
- School of Korean MedicinePusan National UniversityBusan‐siRepublic of Korea
| | - Young Hye Seo
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Hyo Seon Kim
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research CenterKorea Institute of Oriental MedicineNaju‐siRepublic of Korea
| |
Collapse
|
5
|
Duan C, Liu H, Yang X, Liu J, Deng Y, Wang T, Xing J, Hu Z, Xu H. Sirtuin1 inhibits calcium oxalate crystal-induced kidney injury by regulating TLR4 signaling and macrophage-mediated inflammatory activation. Cell Signal 2023; 112:110887. [PMID: 37717713 DOI: 10.1016/j.cellsig.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Sirtuin1 (Sirt1) activation significantly attenuated calcium oxalate (CaOx) crystal deposition and renal inflammatory injury by regulating renal immune microenvironment. Here, to elucidate the molecular mechanism underlying the therapeutic effects of Sirt1 on macrophage related inflammation and tubular epithelial cells (TECs) necrosis, we constructed a macrophage and CaOx monohydrate (COM)-stimulated tubular cell co-culture system to mimic immune microenvironment in kidney and established a mouse model of CaOx nephrocalcinosis in wild-type and myeloid-specific Sirt1 knockout mice. Target prediction analyses of Gene Expression Omnibus Datasets showed that only miR-34b-5p is regulated by lipopolysaccharides and upregulated by SRT1720 and targets the TLR4 3'-untranslated region. In vitro, SRT1720 suppressed TLR4 expression and M1 macrophage polarization and decreased reactive oxygen species (ROS) production and mitochondrial damage in COM-stimulated TECs by targeting miR-34b-5p. Mechanically, Sirt1 promoted miR-34b-5p expression by suppressing the tri-methylation of H3K27, which directly bound to the miR-34b-5p promoter and abolished the miR-34b-5p transcription. Furthermore, loss of Sirt1 aggravated CaOx nephrocalcinosis-induced inflammatory and oxidative kidney injury, while AgomiR-34b reversed these effects. Therefore, our data suggested that Sirt1 inhibited TLR4 signaling and M1 macrophage polarization and decreased inflammatory and oxidative injury of TECs in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 230000 Hefei, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 530000 Nanning, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China.
| | - Hua Xu
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, 430000 Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.; Taikang Center for Life and Medical Sciences, Wuhan University, 430000 Wuhan, China.
| |
Collapse
|
6
|
Ma M, Chen L, Tang Z, Song Z, Kong X. Hepatoprotective effect of total flavonoids from Carthamus tinctorius L. leaves against carbon tetrachloride-induced chronic liver injury in mice. Fitoterapia 2023; 171:105605. [PMID: 37437698 DOI: 10.1016/j.fitote.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Carthamus tinctorius L. leaves, a waste product after Carthami flos production, are rich in flavonoids. Total flavonoids from C. tinctorius L. leaves (TFCTLL) exhibited the protective effect on acute liver injury in mice in previous studies. The aim of the present study was to evaluate the hepatoprotective effect of TFCTLL on chronic liver injury (CLI) and investigate the underlying mechanism. The chemical components of TFCTLL were identified by UPLC-Q-TOF/MS, and their migration into blood was evaluated. The protective effect of TFCTLL on CLI was evaluated by antioxidative and anti-inflammatory experiments in vitro, network pharmacology and a carbon tetrachloride (CCl4)-induced CLI mouse model. We indentified 18 chemical components in the TFCTLL samples and 4 components in plasma. TFCTLL showed significant anti-inflammatory activity and antioxidant capacity in vitro and in vivo. TFCTLL administration prominently improved the liver function and structure, decreased the mRNA expression levels of TLR2, TLR3, TLR4, NF-κB p65, IRF3, AKT1, TRIF, PI3K, MyD88, IL-1β and TNF-α and inhibited the protein expression and nuclear translocation of NF-κB p65 in mice with CLI. The molecular docking results showed that components in plasma had high binding affinity for the targets TLR4, PI3K and AKT1. Therefore, TFCTLL has a protective effect against CCl4-induced CLI, and the underlying mechanisms may be related to antioxidation, anti-inflammation and modulation of the TLRs/NF-κB and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Mengge Ma
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China.
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China; China Academy of Chinese Medical Sciences, 100700 Beijing, PR China.
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Xin Kong
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| |
Collapse
|
7
|
Yeh JL, Kuo CH, Shih PW, Hsu JH, I-Chen P, Huang YH. Xanthine derivative KMUP-1 ameliorates retinopathy. Biomed Pharmacother 2023; 165:115109. [PMID: 37406513 DOI: 10.1016/j.biopha.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Retinal neovascularization (RNV) and cell apoptosis observed in retinopathy are the most common cause of vision loss worldwide. Increasing vascular endothelial growth factor (VEGF), which was driven by hypoxia or inflammation, would result in RNV. This study investigated the anti-inflammatory and anti-apoptotic xanthine-based derivative KMUP-1 on hypoxia-induced conditions in vitro and in vivo. In the oxygen-induced retinopathy animal model, KMUP-1 mitigated vaso-obliteration and neovascularization. In the cell model of hypoxic endothelium cultured at 1% O2, KMUP-1 inhibited endothelial migration and tube formation and had no cytotoxic effect on cell growth. Upregulation of pro-angiogenic factors, HIF-1α and VEGF, and pro-inflammatory cytokines, IL-1β and TNF-α, expression in the retinal-derived endothelial cells, RF/6 A cells, upon hypoxia stimulation, was suppressed by KMUP-1 treatment. RF/6 A cells treated with KMUP-1 showed a reduction of PI3K/Akt, ERK, and RhoA/ROCKs signaling pathways and induction of protective pathways such as eNOS and soluble guanylyl cyclase at 1% O2. Furthermore, KMUP-1 decreased the expression of VEGF, ICAM-1, TNF-α, and IL-1β and increased the BCL-2/BAX ratio in the oxygen-induced retinopathy mouse retina samples. In conclusion, the results of this study suggest that KMUP-1 has potential therapeutic value in retinopathy due to its triple effects on anti-angiogenesis, anti-inflammation, and anti-apoptosis in hypoxic endothelium.
Collapse
Affiliation(s)
- Jwu-Lai Yeh
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Wen Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Peng I-Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Hsun Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
8
|
Lee YM, Kim M, Yuk HJ, Kim SH, Kim DS. Siraitia grosvenorii Residual Extract Inhibits Inflammation in RAW264.7 Macrophages and Attenuates Osteoarthritis Progression in a Rat Model. Nutrients 2023; 15:nu15061417. [PMID: 36986147 PMCID: PMC10058211 DOI: 10.3390/nu15061417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterised by cartilage degeneration and chondrocyte inflammation. We investigated the anti-inflammatory effects of the Siraitia grosvenorii residual extract (SGRE) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages in vitro and its anti-osteoarthritic effects in a monosodium iodoacetate (MIA)-induced OA rat model. SGRE dose-dependently decreased nitric oxide (NO) production in LPS-induced RAW264.7 cells. Moreover, SGRE reduced the pro-inflammatory mediator (cyclooxygenase-2 (COX2), inducible NO synthase (iNOS), and prostaglandin E2 (PGE2)) and pro-inflammatory cytokine (interleukin-(IL)-1β, IL-6, and tumour necrosis factor (TNF-α)) levels. SGRE suppressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation in RAW264.7 macrophages, thus reducing inflammation. Rats were orally administered SGRE (150 or 200 mg/kg) or the positive control drug JOINS (20 mg/kg) 3 days before MIA injection, and once daily for 21 days thereafter. SGRE elevated the hind paw weight-bearing distribution, thus relieving pain. It also reduced inflammation by inhibiting inflammatory mediator (iNOS, COX-2, 5-LOX, PGE2, and LTB4) and cytokine (IL-1β, IL-6, and TNF-α) expression, downregulating cartilage-degrading enzymes, such as MMP-1, -2, -9, and -13. SGRE significantly reduced the SOX9 and extracellular matrix component (ACAN and COL2A1) levels. Therefore, SGRE is a potential therapeutic active agent against inflammation and OA.
Collapse
Affiliation(s)
- Yun Mi Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Misun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Heung Joo Yuk
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
- Correspondence: ; Tel.: +82-42-868-9639
| |
Collapse
|
9
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
10
|
Kuo CH, Zhang BH, Huang SE, Hsu JH, Wang YH, Nguyen TTN, Lai CH, Yeh JL. Xanthine Derivative KMUP-1 Attenuates Experimental Periodontitis by Reducing Osteoclast Differentiation and Inflammation. Front Pharmacol 2022; 13:821492. [PMID: 35571109 PMCID: PMC9097136 DOI: 10.3389/fphar.2022.821492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Periodontitis is an inflammatory disease of gum that may predispose to serious systemic complications such as diabetes and cardiovascular diseases. Activation of macrophages and osteoclasts around periodontal tissue can accelerate gum inflammation. In addition, alteration of cyclic nucleotide levels is associated with the severity of periodontitis. Our previous study has shown that KMUP-1, a xanthine derivative exhibiting phosphodiesterase inhibition and soluble guanylyl cyclase activation, can inhibit lipopolysaccharide (LPS)-induced inflammation and receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclastogenesis. This study was aimed to investigate whether KMUP-1 could attenuate periodontitis both in vitro and in vivo. In vitro, the protective effect of KMUP-1 on inflammation and osteoclastogenesis was investigated in RANKL-primed RAW264.7 cells treated by Porphyromonas gingivalis LPS (PgLPS). The results showed that KMUP-1 attenuated PgLPS-induced osteoclast differentiation as demonstrated by decreased TRAP-positive multinuclear cells and TRAP activity. This reduction of osteoclast differentiation by KMUP-1 was reversed by KT5823, a protein kinase G inhibitor. Similarly, pro-inflammatory cytokine levels induced by PgLPS were inhibited by KMUP-1 in a dose-dependent manner whereas reversed by KT5823. Mechanistically, suppression of MAPKs, PI3K/Akt, and NF-κB signaling pathways and decrease of c-Fos and NFATc1 expression in osteoclast precursors by KMUP-1 may mediate its protective effect. In vivo, two models of periodontitis in rats were induced by gingival injections of PgLPS and ligature placement around molar teeth, respectively. Our results showed that KMUP-1 inhibited alveolar bone loss in both rat models, and this effect mediated at least partly by reduced osteoclastogenesis. In conclusion, our study demonstrated the therapeutic potential of KMUP-1 on periodontitis through suppression of inflammation and osteoclast differentiation.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ban-Hua Zhang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-En Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Thi Tuyet Ngan Nguyen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Han Lai
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Jwu-Lai Yeh,
| |
Collapse
|
11
|
Xu Y, Zhang M, Yang W, Xia B, Wang W, Pan X. Nootkatone protects cartilage against degeneration in mice by inhibiting NF-κB signaling pathway. Int Immunopharmacol 2021; 100:108119. [PMID: 34492535 DOI: 10.1016/j.intimp.2021.108119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a common chronic disease associated with chondrocyte inflammation and cartilage matrix hydrolyzation. Studies report that IL-1β plays a critical role in osteoarthritis. Anti-inflammatory effect of nootkatone has been explored in acute and chronic inflammatory disease, thus the current study sought to explore its therapeutic effect in osteoarthritis. Notably, the effect of nootkatone in osteoarthritis has not been elucidated. Therefore, murine primary chondrocytes were extracted and ACLT induced OA mouse model was established in the current study to explore the therapeutic effect of nootkatone in OA both in vitro and in vivo. The findings showed that nootkatone inhibited inflammatory response and protected cartilage balance in murine primary chondrocyte. Further analysis showed that nootkatone suppressed inflammation and protected cartilage against degeneration induced by ACLT surgery in mice. The cellular mechanism of the protective effect of nootkatone in osteoarthritis and associated signaling pathway was identified as the NF-κB signaling pathway. In summary, the findings of the current study indicated that nootkatone is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Yue Xu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, Shandong 250012, China
| | - Minfa Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Wanliang Yang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bowei Xia
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenhan Wang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Pan
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|