1
|
Nome RV, Flatebø Ø, Bøe SL, Klaasen RA, Aamdal E, Normann M, Bolstad N, Warren DJ. A simple automated assay format for measuring multiple immune checkpoint inhibitors. J Pharm Biomed Anal 2025; 255:116657. [PMID: 39756153 DOI: 10.1016/j.jpba.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved survival rates in oncology, but there is a rising concern for immune-related adverse health outcomes. Monitoring drug serum concentration would enable tailored dosing, however this strategy has not yet been evaluated for ICIs. Fully automated analyte capture assays with time-resolved fluorometry using protein A as tracer, were developed for three different ICIs; the cytotoxic T lymphocyte Antigen-4 (CTLA4) inhibitor ipilimumab (Yervoy; Bristol-Myers Squibb) and the Programmed Death-1 (PD-1) inhibitors nivolumab (Opdivo; Bristol-Myers Squibb) and pembrolizumab (Keytruda; Merck). Drug trough levels were measured in serum samples from ICI-treated patients. Measuring ranges were 1-100 mg/L for all three drugs. Automation allowed for 110 samples to be analyzed in < 4 h. Median drug trough-levels after 5-7 weeks of treatment were 20 (range <1.0-45) mg/L for ipilimumab (n = 113), 60 (range 14-75) mg/L) for nivolumab (n = 21) and 19 (range 7.4-39) mg/L for pembrolizumab (n = 20). Routine drug concentration monitoring for ipilimumab, nivolumab and pembrolizumab is feasible using fully automated analyte capture assays constructed with commercially available reagents. The large drug serum concentration ranges in samples from real-world patients, should be further investigated to assess the clinical relevance of ICI concentration monitoring.
Collapse
Affiliation(s)
- Ragnhild V Nome
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| | | | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Rolf Anton Klaasen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Elin Aamdal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - David John Warren
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Saarela M, Parviainen E, Lleo A, di Tommaso L, Raunio H, Kankaanranta K, Vuopala K, Rönkä A, Nurmenniemi S, Kallio R, Jukkola A, Selander KS. Increased PD-1 expression in livers associated with PD-1-antibody-induced hepatotoxicity. BMC Immunol 2025; 26:4. [PMID: 39844069 PMCID: PMC11755961 DOI: 10.1186/s12865-025-00682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Vanishing bile duct syndrome (VBDS) is a serious drug induced liver injury characterized by chronic cholestasis and loss of intrahepatic bile ducts. VBDS has been reported also following checkpoint inhibitor treatment. We compared CD3 + , CD4 + , CD8 + , CD20 + , CD57 + , PD-1 + and PD-L1 + lymphocyte infiltrates in liver biopsies of patients that encountered VBDS (n = 2) or hepatotoxicity (n = 3) after pembrolizumab (n = 4) or nivolumab (n = 1) treatment with samples from normal liver (n = 10), non-alcohol steatohepatitis (NASH, n = 10), primary biliary cholangitis (PBC, n = 10) or pembrolizumab-treated patients without adverse events (n = 2). Notably, none of the cancer patients had primary nor metastatic liver tumors. We also studied direct growth effects of pembrolizumab on primary human intrahepatic biliary epithelial cells (HIBEpiC) in vitro. Liver sections of all checkpoint inhibitor- treated patients exhibited significantly higher CD3 + infiltration than normal livers, and significantly higher PD-L1 + , CD4 + and CD8 + infiltration, than other groups. PD-1 + infiltration was significantly increased in livers of patients with severe hepatic adverse event. CD57 + infiltration was similar in normal livers, NASH- and PBC groups, but highly increased in the checkpoint inhibitor-treated patients. Immune cell infiltrates were similar between NASH and normal livers. PBC samples had significantly higher CD3 + , CD4 + , CD8 + and CD20 + infiltrates than normal livers. HIBEpiC express PD-L1 but pembrolizumab did not affect their viability in vitro. Our findings suggest that VBDS is not due to direct cytotoxicity of checkpoint inhibitors and that the immunological attack against livers induced by these drugs is different from other cholestatic liver conditions.Biological insight: Checkpoint inhibitors upregulate PD-1 and PD-L1, as well as cytotoxic CD57 + cells in the non-cancerous liver tissues and this may be associated with checkpoint inhibitor-induced hepatotoxicity.
Collapse
Affiliation(s)
- Miro Saarela
- Department of Oncology and Hematology, Oulu University Hospital, Oulu, Finland
| | - Essi Parviainen
- Department of Oncology and Hematology, Oulu University Hospital, Oulu, Finland
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Internal Medicine and Hepatology Unit, Department of Gastroenterology, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Hanna Raunio
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Krista Kankaanranta
- Department of Oncology, Tampere University Hospital, Tampere, Finland
- Tampere Cancer Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katri Vuopala
- Department of Pathology, Lapland Central Hospital, Rovaniemi, Finland
| | - Aino Rönkä
- Oncology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Sini Nurmenniemi
- Department of Oncology and Hematology, Oulu University Hospital, Oulu, Finland
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Raija Kallio
- Department of Oncology and Hematology, Oulu University Hospital, Oulu, Finland
| | - Arja Jukkola
- Department of Oncology, Tampere University Hospital, Tampere, Finland
- Tampere Cancer Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katri S Selander
- Department of Oncology and Hematology, Oulu University Hospital, Oulu, Finland.
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Döring S, Weller MG, Reinders Y, Konthur Z, Jaeger C. Challenges and Insights in Absolute Quantification of Recombinant Therapeutic Antibodies by Mass Spectrometry: An Introductory Review. Antibodies (Basel) 2025; 14:3. [PMID: 39846611 PMCID: PMC11755444 DOI: 10.3390/antib14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs. With increasing commercial relevance, the absolute quantification of mAbs, traceable to an international standard system of units (SI units), has attracted attention from science, industry, and national metrology institutes (NMIs). Quantification of proteotypic peptides after enzymatic digestion using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has emerged as the most viable strategy, though methods targeting intact mAbs are still being explored. We review peptide-based quantification, focusing on critical experimental steps like denaturation, reduction, alkylation, choice of digestion enzyme, and selection of signature peptides. Challenges in amino acid analysis (AAA) for quantifying pure mAbs and peptide calibrators, along with software tools for targeted MS data analysis, are also discussed. Short explanations within each chapter provide newcomers with an overview of the field's challenges. We conclude that, despite recent progress, further efforts are needed to overcome the many technical hurdles along the quantification workflow and discuss the prospects of developing standardized protocols and certified reference materials (CRMs) for this goal. We also suggest future applications of newer technologies for absolute mAb quantification.
Collapse
Affiliation(s)
- Sarah Döring
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| | - Michael G. Weller
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., 44139 Dortmund, Germany;
| | - Zoltán Konthur
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| | - Carsten Jaeger
- Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany; (S.D.); (M.G.W.); (Z.K.)
| |
Collapse
|
4
|
Harsha Sri K, Ravisankar P, Kumar Konidala S, Srinivasa Babu P. Application of newly developed and validated LC-MS/MS method for pharmacokinetic study of adagrasib and pembrolizumab simultaneously in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124171. [PMID: 38843708 DOI: 10.1016/j.jchromb.2024.124171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a significant subtype of lung cancer, and poses a dangerous global threat. One of the current approaches of NSCLC treatment is a combination therapy of adagrasib and pembrolizumab. Accurate monitoring of these drug concentrations in biological fluids is critical for treatment efficacy. Since no method was reported for simultaneous estimation of these drugs, this study focuses on the development of a validated LC-MS/MS bioanalytical method for simultaneous quantification of Adagrasib and Pembrolizumab in rat plasma. The analytes were extracted from the biological matrix through liquid-liquid extraction techniques using acetonitrile as extraction solvent. The analytes were separated on a Waters X-bridge phenyl C18 column, with a mixture of acetonitrile: 0.1 % TFA in water (50: 50 v/v) as mobile phase at an isocratic flow rate of 1.0 mL/min with a runtime of about 5 min. Adagrasib (m/z 605.12 → 201.62), Pembrolizumab (m/z 146.32 → 85.15), and Sotorasib (m/z 561.59 → 218.92) were determined by recording the mass spectra through multiple reaction monitoring in positive mode. The method was validated according to USFDA guidelines. The results demonstrate satisfactory linearity with an r2 value of 0.9998 in the ranges of 40-800 and 10-200 ng/mL, accuracy with mean percentage recovery of 95.22-98.59 % and 96.98-98.57 %, precision indicated with %RSD ranged between 0.39-1.91 % and 0.85-9.03 % for Adagrasib and Pembrolizumab respectively, and other key parameters. The developed method can determine the pharmacokinetic parameters to indicate the efficacy and safety of the drugs, and also can quantify selected drugs simultaneously in biological samples.
Collapse
Affiliation(s)
- Kamma Harsha Sri
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, A.P. 522213, India; Department of Pharmaceutical Analysis, Vignan Pharmacy College, Vadlamudi, Guntur, A.P. 522213, India
| | - Panchumarthy Ravisankar
- Department of Pharmaceutical Analysis, Vignan Pharmacy College, Vadlamudi, Guntur, A.P. 522213, India.
| | - Sathish Kumar Konidala
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, A.P. 522213, India
| | - P Srinivasa Babu
- Department of Pharmaceutics, Vignan Pharmacy College, Vadlamudi, Guntur, A.P. 522213, India
| |
Collapse
|
5
|
Cao R, Xu S, Yu Z, Xu L, Ge Z, Huo Q, Zhu G, Qiao B. Integration of protein L-immobilized epoxy magnetic bead capture with LC-MS/MS for therapeutic monoclonal antibody quantification in serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3720-3731. [PMID: 38808588 DOI: 10.1039/d4ay00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In recent years, there has been a growing interest in the thriving monoclonal antibody (mAb) industry due to the wide utilization of mAbs in clinical therapies. Robust and accurate bioanalytical methods are required to enable fast quantification of mAbs in biological matrices, especially in the context of pharmacokinetics (PKs)/pharmacodynamics (PDs) and therapeutic drug monitoring (TDM) studies. In this investigation, we presented a novel immuno-magnetic capture coupled with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method designed for the quantification of immunoglobulin G-kappa-based mAbs in biological fluids. The immunoaffinity absorbent for mAb drug purification was meticulously crafted by immobilizing protein L onto monosize, magnetic poly(glycidyl methacrylate) (m-pGMA) beads, synthesized through dispersion polymerization. The microspheres were acquired with an average size of 1.6 μm, and the optimal binding of mAbs from the aqueous mAb solution was determined to be 45.82 mg g-1. The quantification of mAbs in 10 μL serum samples was achieved through affinity purification using m-pGMA@protein L beads (employing rituximab as an internal standard (IS)), on-bead reduction, and rapid tryptic digestion. Remarkably, the entire process, taking less than 2.5 hours, held significant potential for simplifying pretreatment procedures and minimizing analytical time. Furthermore, the developed method underwent validation in accordance with the European Medicines Agency (EMA) guidelines. The assay demonstrated commendable linearity within the 2-400 μg mL-1 range for both daratumumab and pembrolizumab. Intra- and inter-assay coefficients of variation fell within the range of 0.7% to 13.4%, meeting established acceptance criteria. Other validation parameters also conformed to regulatory standards. Ultimately, the efficacy of the method was substantiated in a pharmacokinetic study following a single-dose intravenous administration to mice, underscoring its applicability and reliability in real-world scenarios.
Collapse
Affiliation(s)
- Rongrong Cao
- School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Songlin Xu
- School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhirui Yu
- Safety and Technology Center of Industry Products, Tianjin Custom, Tianjin, 300308, China
| | - Liang Xu
- Tianjin Medical College, Tianjin 300070, China
| | - Zhiqiang Ge
- School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Qianyu Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Bin Qiao
- School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
7
|
Otten LS, Piet B, van den Haak D, Schouten RD, Schuurbiers M, Badrising SK, Boerrigter E, Burgers SA, Ter Heine R, van den Heuvel MM. Prognostic Value of Nivolumab Clearance in Non-Small Cell Lung Cancer Patients for Survival Early in Treatment. Clin Pharmacokinet 2023; 62:1749-1754. [PMID: 37856040 PMCID: PMC10684661 DOI: 10.1007/s40262-023-01316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors improved survival of advanced stage non-small cell lung cancer patients, but the overall response rate remains low. A biomarker that identifies non-responders would be helpful to allow treatment decisions. Clearance of immune checkpoint inhibitors is related to treatment response, but its prognostic potential early in treatment remains unknown. Our primary aim was to investigate the prognostic potential of nivolumab clearance for overall survival early in treatment. Our secondary aim was to evaluate the performance of nivolumab clearance as prognostic biomarker. PATIENTS AND METHODS Individual estimates of nivolumab clearances at first dose, 6 and 12 weeks after treatment initiation were obtained via nonlinear mixed-effects modelling. Prognostic value of nivolumab clearance was estimated using univariate Cox regression at first dose and for the ratios between 6 and 12 weeks to first dose. The performance of nivolumab clearance as biomarker was assessed by calculating sensitivity and specificity. RESULTS During follow-up of 75 months, 69 patients were included and 865 died. Patients with a nivolumab clearance ≥ 7.3 mL/h at first dose were more likely to die compared to patients with a nivolumab clearance < 7.3 mL/h at first dose (hazard ratio [HR] = 3.55, 955 CI 1.75-7.20). The HRs of dose nivolumab clearance ratios showed similar results with a HR of 3.93 (955 CI 1.66-9.32) for 6 weeks to first-dose clearance ratio at a 0.953 cut-point and a HR of 2.96 (955 CI 1.32-6.64) for 12 weeks to first-dose clearance ratio at a cut-point of 0.814. For nivolumab clearance at all early time points, sensitivity was high (≥ 0.95) but specificity was low (0.11-0.29). CONCLUSION Nivolumab clearance is indicative of survival early in treatment. Our results encourage to further assess the prognostic potential of immunotherapy clearance.
Collapse
Affiliation(s)
- Leila S Otten
- Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Berber Piet
- Department of Pulmonology, Radboud University Medical Center, Nijmegen, 864, The Netherlands
| | - Demy van den Haak
- Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Robert D Schouten
- Department of Thoracic Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Milou Schuurbiers
- Department of Pulmonology, Radboud University Medical Center, Nijmegen, 864, The Netherlands
| | - Sushil K Badrising
- Department of Thoracic Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Sjaak A Burgers
- Department of Thoracic Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek Ziekenhuis, Amsterdam, The Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonology, Radboud University Medical Center, Nijmegen, 864, The Netherlands
| |
Collapse
|
8
|
Characterization and determination of bovine immunoglobulin G subtypes in milk and dairy products by UPLC-MS. Food Chem 2022; 390:133170. [PMID: 35597093 DOI: 10.1016/j.foodchem.2022.133170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
In this study, ultra-high performance liquid chromatography mass spectrometry (UPLC-MS) method was established for the characterization and quantitative determination of immunoglobulin G (IgG) subtypes (IgG1, IgG2, IgG3) in bovine dairy products. High-resolution mass spectrometry (HRMS) was applied to qualitatively confirm the theoretical peptides with specificity, enzymatic hydrolysis curve and stability among in heavy chain constant (CH1, CH2 and CH3) regions. The characteristic peptides VHNEGLPAPIVR, EPSVFIFPPKPK, GLPAPIVR, VVSALR were screened to quantitative analysis bovine IgG1, IgG2, IgG3 and the total amount of bovine IgG1 and IgG3, respectively. Isotope-labeled peptides were obtained by isotope dimethylation reaction, which aimed to correct the matrix effects. The results showed that the recovery was between 98.7% and 103.5%, and the precision of inter-day and intra-day was less than 6.8%. Moreover, this method had good linearity (R2 ≥ 0.999). Therefore, this research provided an effective method for quantitatively detecting bovine IgG subtypes in milk and dairy products.
Collapse
|
9
|
de Jong KA, Rosing H, Huitema AD, Beijnen JH. Optimized sample pre-treatment procedure for the simultaneous UPLC-MS/MS quantification of ipilimumab, nivolumab, and pembrolizumab in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123215. [DOI: 10.1016/j.jchromb.2022.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
|
10
|
Interest of high-resolution mass spectrometry in analytical toxicology: Focus on pharmaceuticals. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Cross-Validation of a Multiplex LC-MS/MS Method for Assaying mAbs Plasma Levels in Patients with Cancer: A GPCO-UNICANCER Study. Pharmaceuticals (Basel) 2021; 14:ph14080796. [PMID: 34451893 PMCID: PMC8401780 DOI: 10.3390/ph14080796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Different liquid chromatography tandem mass spectrometry (LC-MS/MS) methods have been published for quantification of monoclonal antibodies (mAbs) in plasma but thus far none allowed the simultaneous quantification of several mAbs, including immune checkpoint inhibitors. We developed and validated an original multiplex LC-MS/MS method using a ready-to-use kit to simultaneously assay 7 mAbs (i.e., bevacizumab, cetuximab, ipilimumab, nivolumab, pembrolizumab, rituximab and trastuzumab) in plasma. This method was next cross-validated with respective reference methods (ELISA or LC-MS/MS). METHODS The mAbXmise kit was used for mAb extraction and full-length stable-isotope-labeled antibodies as internal standards. The LC-MS/MS method was fully validated following current EMA guidelines. Each cross validation between reference methods and ours included 16-28 plasma samples from cancer patients. RESULTS The method was linear from 2 to 100 µg/mL for all mAbs. Inter- and intra-assay precision was <14.6% and accuracy was 90.1-111.1%. The mean absolute bias of measured concentrations between multiplex and reference methods was 10.6% (range 3.0-19.9%). CONCLUSIONS We developed and cross-validated a simple, accurate and precise method that allows the assay of up to 7 mAbs. Furthermore, the present method is the first to offer a simultaneous quantification of three immune checkpoint inhibitors likely to be associated in patients.
Collapse
|