1
|
Domínguez-de-Barros A, Sifaoui I, Dorta-Guerra R, Lorenzo-Morales J, Castro-Fuentes R, Córdoba-Lanús E. Telomere- and oxidative stress dynamics in Psittacidae species with different longevity trajectories. GeroScience 2025; 47:121-134. [PMID: 39448517 PMCID: PMC11872948 DOI: 10.1007/s11357-024-01397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Telomeres, conserved DNA sequences at chromosome ends, naturally shorten with age, exacerbated by external factors like environmental challenges and reproduction. Birds, particularly psittacine, are gaining prominence as new aging models over the years because of their unique characteristics. This study explores erythrocyte telomere length (TL) and oxidative stress markers in plasma of long- and short-lived captive birds of the order Psittaciformes over four years. Long-lived birds consistently exhibited longer TL than short-lived ones (p = 0.012) but experienced a more pronounced TL shortening rate (p < 0.001) than short-lived ones. Breeding individuals experienced increased TL shortening compared to non-reproductive counterparts in long-lived birds (p = 0.008). Interestingly, long-lived birds showed a higher total antioxidant capacity than short-lived ones (p < 0.001), which was also increased during breeding (p = 0.026). A significant correlation was found between the telomere length shortening rate within the 4 years of study and the accumulated oxidative stress (r = 0.426, p = 0.069) in short-lived birds. These findings shed light on TL and oxidative stress dynamics over time, revealing distinct patterns influenced by life-traits among longevity groups.
Collapse
Affiliation(s)
- Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Inés Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Sección de Matemáticas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Sección Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rafael Castro-Fuentes
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Sección Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Domínguez-de-Barros A, Sifaoui I, Dorta-Guerra R, Lorenzo-Morales J, Castro-Fuentes R, Córdoba-Lanús E. DNA damage (8-OHdG) and telomere length in captive Psittacidae birds with different longevity. Front Vet Sci 2024; 11:1430861. [PMID: 39170634 PMCID: PMC11335655 DOI: 10.3389/fvets.2024.1430861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Aging is a complex process influenced by internal and external factors. Oxidative stress damages DNA, leading to 8-hydroxy-2' deoxyguanosine formation (8-OHdG). Telomere shortening is considered a biomarker of aging and oxidative stress may enhance its attrition. The ability to manage and repair oxidative stress varies among species and life histories. Avian species, such as Psittacidae birds, exhibit exceptional lifespans despite their physiological characteristics that might suggest otherwise. This study investigates 8-OHdG levels in serum samples from long- and short-lived birds of the order Psittaciformes, examining their relationship with telomere length and antioxidant capacity based on lifespan strategies. Among 43 individuals analyzed 26 belonged to the "long-lived species" group and 17 belonged to the "short-lived species" one. Relative telomere length (rTL) was measured in DNA isolated from whole blood by qPCR, and oxidative stress markers, such as Total Antioxidant Capacity (TAC) and 8-OHdG, were determined by spectrophotometry in serum samples. Long-lived birds had longer rTL than short-lived ones [1.308 ± 0.11 vs. 0.565 ± 0.13, (p < 0.001)]. On the contrary, short-lived birds showed more DNA damage than their counterparts [3.847 ± 0.351 vs. 2.012 ± 0.308, respectively, (p < 0.001)]. Old birds had shorter rTL than young ones, for both longevity groups (p < 0.001). Although no correlation was found between 8-OHdG levels and age, nor 8-OHdG and telomere length, long-lived birds exhibited 75.42-unit increased TAC levels when increased 8-OHdG concentrations (p = 0.046). These findings highlight distinct patterns of telomere length and oxidative stress influenced by lifespan strategies among avian longevity groups.
Collapse
Affiliation(s)
- Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Inés Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Sección de Matemáticas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Sección Medicina, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Rafael Castro-Fuentes
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-Sección Medicina, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Ottinger MA, Holmes D. Comparative biology and non-traditional approaches for basic aging research for facilitating translational studies. GeroScience 2024; 46:2803-2813. [PMID: 37940788 PMCID: PMC11009194 DOI: 10.1007/s11357-023-00992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
As humans, we aspire to healthy aging and ideally reaching our maximal lifespan. That, however, requires optimizing resilience to stressors and minimizing exposure to factors that accelerate aging. Understanding the complexities of aging processes involves characterizing the causal bases of physical, physiological, and cognitive deficits that accumulate over time, eventually culminating in reduced functionality and decreased resistance to disease and environmental stressors. Both the progression of age-related conditions and onset of diseases are affected by environmental stressors; however, the basis for increased susceptibility remains poorly understood. Furthermore, the actions of some environmental stressors, such as endocrine disruptors, can alter both developmental and aging processes, contributing to lifelong issues with inflammatory and neurodegenerative conditions. This manuscript focuses on the comparative biology and evolution of aging and longevity. The status of an array of animal models and potential for specific geroscience translational applications is addressed by asking these questions. What animal models are currently available for aging and translational geroscience? What are the key roadblocks and barriers for studies of healthy aging, and how might specific animal models be useful? Are research tools available? Which vertebrate animal models can specifically address targeted questions in human aging processes? Can information be synthesized for a range of vertebrate species to identify suitable animal models for addressing specific research questions in geroscience, especially relative to basic physiological function, timing and trajectory of disease progression, effects of environmental stressors, and potential for regenerative medicine?
Collapse
Affiliation(s)
- Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| | - Donna Holmes
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, 83844, USA
- University of Washington School of Medicine, Seattle, WA, 98105, USA
| |
Collapse
|
4
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1692-1703. [PMID: 38105191 PMCID: PMC10792675 DOI: 10.1134/s0006297923110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the "pace-of-life." A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.
Collapse
Affiliation(s)
- Rong Yuan
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| | - Erin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
| | - Kevin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| |
Collapse
|
6
|
Flaim M, Blaisdell AP. The effect of age on delay performance and associative learning tasks in pigeons. Learn Behav 2023; 51:281-294. [PMID: 36624334 PMCID: PMC10506936 DOI: 10.3758/s13420-022-00565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Pigeons are commonly utilized in psychological research, and their cognitive abilities have been thoroughly investigated. Yet very little is known about how these abilities change with age. In contrast, age-related changes in humans, nonhuman primates, and rodents are well documented. Mammalian research consistently shows that older subjects show deficits in a variety of learning and memory processes, particularly those that rely on the prefrontal cortex and hippocampus. This research expands the avian aging literature by administering a memory task, the delayed match to sample procedure, and an associative learning task, a conditional or symbolic match to sample procedure, to nine young and 11 old pigeons. Previous research has indicated that these tasks rely on the avian equivalent to the mammalian prefrontal cortex, and we predicted that performance on both tasks would decline with age. In contrast to our predictions, only the associative learning task was sensitive to age-related decline. Performance on the memory task was maintained in older subjects. These results highlight further potential differences in avian versus mammalian aging, particularly when it comes to the prefrontal cortex.
Collapse
Affiliation(s)
- Mary Flaim
- Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
7
|
Carsia RV, McIlroy PJ, John-Alder HB. Invited review: Adrenocortical function in avian and non-avian reptiles: Insights from dispersed adrenocortical cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111424. [PMID: 37080352 DOI: 10.1016/j.cbpa.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells from C. elegans. Life stage added to this complex picture of adrenal steroidogenic function. This was evident when sexually mature and immature Sceloporus lizards were subjected to a nutritional stressor, cricket restriction/deprivation. There were divergent patterns of corticosterone, aldosterone, and progesterone responses and associated sensitivities of each to corticotropin (ACTH). Finally, we provide strong evidence that there are multiple, labile subpopulations of adrenocortical cells. We conclude that the rapid (days) remodeling of adrenocortical steroidogenic function through fluctuating cell subpopulations drives the circulating corticosteroid profile of Sceloporus lizard species. Interestingly, progesterone and aldosterone may be more important with corticosterone serving as essential supportive background. In the wild, the flux in adrenocortical cell subpopulations may be adversely susceptible to climate-change related disruptions in food sources and to xenobiotic/endocrine-disrupting chemicals. We urge further studies using native lizard species as bioindicators of local pollutants and as models to examine the broader eco-exposome.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, United States
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, The Pinelands Field Station Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
8
|
Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, Dufour E, Pohjoismäki JLO. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (
Lepus
spp., Lagomorpha: Leporidae). Mol Ecol 2022. [PMID: 36320183 DOI: 10.1111/mec.16755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Speciation is a fundamental evolutionary process, which results in genetic differentiation of populations and manifests as discrete morphological, physiological and behavioural differences. Each species has travelled its own evolutionary trajectory, influenced by random drift and driven by various types of natural selection, making the association of genetic differences between the species with the phenotypic differences extremely complex to dissect. In the present study, we have used an in vitro model to analyse in depth the genetic and gene regulation differences between fibroblasts of two closely related mammals, the arctic/subarctic mountain hare (Lepus timidus Linnaeus) and the temperate steppe-climate adapted brown hare (Lepus europaeus Pallas). We discovered the existence of a species-specific expression pattern of 1623 genes, manifesting in differences in cell growth, cell cycle control, respiration, and metabolism. Interspecific differences in the housekeeping functions of fibroblast cells suggest that speciation acts on fundamental cellular processes, even in these two interfertile species. Our results help to understand the molecular constituents of a species difference on a cellular level, which could contribute to the maintenance of the species boundary.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Sina Saari
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Manu Soininmäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Eric Dufour
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| |
Collapse
|