1
|
Mishra JS, Bosse B, Hoppe KK, Malecki K, Hetzel SJ, Kumar S. Perfluoroalkyl substances (PFAS) exposure and preeclampsia risk: Impaired angiogenesis through suppression of VEGF signaling. Reprod Toxicol 2025; 132:108827. [PMID: 39732411 PMCID: PMC11890960 DOI: 10.1016/j.reprotox.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are linked to preeclampsia (PE), a condition involving abnormal angiogenesis. Prior research on this association has been inconclusive. We investigated the relationship between maternal PFAS exposure and PE risk in Wisconsin. We also examined if PFAS disrupts angiogenesis and, if so, what mechanisms are involved. We conducted a case-control study with 40 PE cases and 40 controls. Maternal serum was analyzed for 38 different PFAS compounds using LC MS/MS. Functional in vitro experiments assessed PFOS effects on angiogenesis and mechanisms. Maternal serum samples from women with PE exhibited significantly higher PFOS and PFHPS concentrations than controls. After adjusting for confounders, each log-scale IQR increase in PFOS and PFHPS concentrations was associated with a 7.18-fold (95 % CI: 2.24, 23.0) and 5.40-fold (95 % CI: 1.81, 16.1) higher odds of PE, respectively. Furthermore, PFOS and PFHPS were positively associated with sFLT1 levels and the sFLT1/PLGF ratio. In vitro experiments revealed that PFOS exposure impaired HUVEC proliferation, migration, and tube formation, essential processes for angiogenesis. The membrane-based antibody array showed that PFOS decreased expression of multiple angiogenic proteins, including I-TAC, uPAR, VEGFR2, MMP-1, IL-1α, Angiopoietin-2, IL-1β, PECAM-1, TIE-2, and TIMP-2. The qPCR analysis demonstrated that PFOS decreased VEGFR2, the upstream target of VEGF, at the transcriptional level. In conclusion, elevated PFAS, especially PFOS and PFHPS, are linked to increased PE risk. PFOS may suppress angiogenesis via attenuated VEGFR2-mediated signaling, providing a molecular mechanism linking PFAS and PE pathogenesis.
Collapse
Affiliation(s)
- Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Bradley Bosse
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kara K Hoppe
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kristen Malecki
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago School of Public Health, Chicago, IL, USA
| | - Scott J Hetzel
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
2
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
3
|
Liang HW, Koistinen H, Barrett ES, Xun X, Yin Q, Kannan K, Moog NK, Ng C, O’Connor TG, Miller R, Adibi JJ. Associations of Serum Perfluoroalkyl Substances and Placental Human Chorionic Gonadotropin in Early Pregnancy, Measured in the UPSIDE Study in Rochester, New York. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47008. [PMID: 38625811 PMCID: PMC11020022 DOI: 10.1289/ehp12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widely detected in pregnant women and associated with adverse outcomes related to impaired placental function. Human chorionic gonadotropin (hCG) is a dimeric glycoprotein hormone that can indicate placental toxicity. OBJECTIVES Our aim was to quantify the association of serum PFAS with placental hCG, measured as an intact molecule (hCG), as free alpha-(hCG α ) and beta-subunits (hCG β ), and as a hyperglycosylated form (h-hCG), and evaluate effect measure modification by social determinants and by fetal sex. METHODS Data were collected from 326 pregnant women enrolled from 2015 to 2019 in the UPSIDE study in Rochester, New York. hCG forms were normalized for gestational age at the time of blood draw in the first trimester [multiple of the median (MoM)]. Seven PFAS were measured in second-trimester maternal serum. Multivariate imputation by chained equations and inverse probability weighting were used to evaluate robustness of linear associations. PFAS mixture effects were estimated by Bayesian kernel machine regression. RESULTS Perfluorohexane sulfonic acid (PFHxS) [hCG β : 0.29 log MoM units per log PFHxS; 95% confidence interval (CI): 0.08, 0.51] and perfluorodecanoic acid (PFDA) (hCG: - 0.09 ; 95% CI: - 0.16 , - 0.02 ) were associated with hCG in the single chemical and mixture analyses. The PFAS mixture was negatively associated with hCG α and positively with hCG β . Subgroup analyses revealed that PFAS associations with hCG differed by maternal race/ethnicity and education. Perfluoropentanoic acid (PFPeA) was associated with hCG β only in Black participants (- 0.23 ; 95% CI: - 0.37 , - 0.09 ) and in participants with high school education or less (- 0.14 ; 95% CI: - 0.26 , - 0.02 ); conversely, perfluorononanoic acid (PFNA) was negatively associated with hCG α only in White participants (- 0.15 ; 95% CI: - 0.27 , - 0.03 ) and with hCG β only in participants with a college education or greater (- 0.19 ; 95% CI: - 0.36 , - 0.01 ). These findings were robust to testing for selection bias, confounding bias, and left truncation bias where PFAS detection frequency was < 100 % . Two associations were negative in male (and null in female) pregnancies: Perfluoroundecanoic acid (PFUnDA) with hCG α , and PFNA with h-hCG. CONCLUSIONS Evidence was strongest for the association between PFHxS and PFDA with hCG in all participants and for PFPeA and PFNA within subgroups defined by social determinants and fetal sex. PFAS mixture associations with hCG α and hCG β differed, suggesting subunit-specific types of toxicity and/or regulation. Future studies will evaluate the biological, clinical and public health significance of these findings. https://doi.org/10.1289/EHP12950.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Qing Yin
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University, New York, USA
- Department of Environmental Medicine, New York University, New York, USA
| | - Nora K. Moog
- Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Carla Ng
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| | - Rich Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer J. Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Hong J, Du K, Jin H, Chen Y, Jiang Y, Zhang W, Chen D, Zheng S, Cao L. Evidence of promoting effects of 6:2 Cl-PFESA on hepatocellular carcinoma proliferation in humans: An ideal alternative for PFOS in terms of environmental health? ENVIRONMENT INTERNATIONAL 2024; 186:108582. [PMID: 38513556 DOI: 10.1016/j.envint.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
5
|
Hofmann A, Mishra JS, Yadav P, Dangudubiyyam SV, Blesson CS, Kumar S. PFOS Impairs Mitochondrial Biogenesis and Dynamics and Reduces Oxygen Consumption in Human Trophoblasts. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2023; 7:164-175. [PMID: 37920428 PMCID: PMC10621633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a synthetic chemical used in various commercial applications and industrial settings, has led to contamination of drinking water and has been detected in the bloodstream of pregnant women with gestational complications. Recent investigations have indicated that PFOS disrupts placental function; however, the mechanism remains elusive. Given the significant abundance of mitochondria in the placenta, which play a pivotal role in fulfilling the heightened energy requirements of pregnancy, our research aimed to examine the repercussions of PFOS exposure on mitochondrial dynamics within placental trophoblasts. Specifically, human trophoblasts (HTR-8/SVneo) were exposed to environmentally relevant concentrations of PFOS ranging from 0.1 to 50 μM for 48 hours. Findings revealed that PFOS exposure elicited a concentration-dependent decrease in basal, maximal, and ATP-linked respiration. PFOS inhibited the activity of electron transport complexes I, II, and III, resulting in diminished ATP production. Furthermore, PFOS reduced mitochondrial DNA copy number, indicating less mitochondrial content. Concurrently, there was a downregulation in the expression of mitochondrial biogenesis-related genes, including PGC-1α, NRF1, and NRF2. Notably, PFOS perturbed mitochondrial dynamics by suppressing the expression of fission-related genes (FIS1 and DRP1) and fusion-related genes (MFN1 and MFN2). In summary, our findings suggest that PFOS exposure leads to a decline in mitochondrial content and compromises the bioenergetic capacity of trophoblasts by impairing cellular respiration. This reduction in mitochondrial biogenesis and alterations in fission/fusion dynamics induced by PFOS may contribute to mitochondrial dysfunction in trophoblasts. Consequently, strategies that preserve mitochondrial function in trophoblasts may mitigate PFOS-induced impairment of placental energy metabolism.
Collapse
Affiliation(s)
- Alissa Hofmann
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sri Vidya Dangudubiyyam
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sathish Kumar
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
6
|
Dangudubiyyam SV, Bosse B, Yadav P, Song R, Hofmann A, Mishra JS, Kumar S. Restoring Angiotensin Type 2 Receptor Function Reverses PFOS-Induced Vascular Hyper-Reactivity and Hypertension in Pregnancy. Int J Mol Sci 2023; 24:14180. [PMID: 37762482 PMCID: PMC10531530 DOI: 10.3390/ijms241814180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy induces hypertension with decreased vasodilatory angiotensin type-2 receptor (AT2R) expression and impaired vascular reactivity and fetal weights. We hypothesized that AT2R activation restores the AT1R/AT2R balance and reverses gestational hypertension by improving vascular mechanisms. Pregnant Sprague-Dawley rats were exposed to PFOS through drinking water (50 μg/mL) from gestation day (GD) 4-20. Controls received drinking water with no detectable PFOS. Control and PFOS-exposed rats were treated with AT2R agonist Compound 21 (C21; 0.3 mg/kg/day, SC) from GD 15-20. In PFOS dams, blood pressure was higher, blood flow in the uterine artery was reduced, and C21 reversed these to control levels. C21 mitigated the heightened contraction response to Ang II and enhanced endothelium-dependent vasorelaxation in uterine arteries of PFOS dams. The observed vascular effects of C21 were correlated with reduced AT1R levels and increased AT2R and eNOS protein levels. C21 also increased plasma bradykinin production in PFOS dams and attenuated the fetoplacental growth restriction. These data suggest that C21 improves the PFOS-induced maternal vascular dysfunction and blood flow to the fetoplacental unit, providing preclinical evidence to support that AT2R activation may be an important target for preventing or treating PFOS-induced adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Bradley Bosse
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| |
Collapse
|
7
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
8
|
Predicting Exposure to Perfluorinated Alkyl Substances (PFAS) among US Infants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148402. [PMID: 35886252 PMCID: PMC9318798 DOI: 10.3390/ijerph19148402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
PFASs have been detected in nearly every serum sample collected over the last two decades from US adults as part of the National Health and Nutrition Examination Survey (NHANES) and are commonly found in other data sets from around the world. However, less is known about infant PFAS exposures, primarily because the collection of infant serum samples is less common and frequently avoided. Cord blood samples are often preferred for chemical exposure assessments because this is thought to provide a good representation of infant serum concentrations, at least at the time of birth. In this paper, we will provide a statistical and probabilistic analysis of what can be expected for infants living in the US using NHANES from 2007 to 2008, which contains a rare subset of infant data. Regulatory efforts that require estimation of exposures among the very youth can be challenging, both because of a lack of data in general and because variability among this most vulnerable population can be uncertain. We report that US infant exposures are extremely common and that serum concentrations remain fairly constant, despite infant growth rates and relatively high caloric and fluid intake, with the possible exception of PFOS. Infant serum PFOS concentrations between months 1 and 3 are consistently higher than at less than one month, even though healthy infants at 1 and 2 months weigh more than they did at birth. This suggests that the babies are exposed to greater concentrations of PFOS after birth or that excretion kinetics differ for this PFAS.
Collapse
|
9
|
Blake BE, Rickard BP, Fenton SE. A High-Throughput Toxicity Screen of 42 Per- and Polyfluoroalkyl Substances (PFAS) and Functional Assessment of Migration and Gene Expression in Human Placental Trophoblast Cells. FRONTIERS IN TOXICOLOGY 2022; 4:881347. [PMID: 35548680 PMCID: PMC9081605 DOI: 10.3389/ftox.2022.881347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants that have been associated with adverse pregnancy outcomes in women and experimental research models. Adverse developmental and reproductive outcomes have been investigated for relatively few PFAS, and such studies are not scalable to address the thousands of unique chemical structures. As the placenta has been reported as a PFAS target tissue, the human placental trophoblast JEG-3 cell line was employed in a high-throughput toxicity screen (HTTS) to evaluate the effects of 42 unique PFAS on viability, proliferation, and mitochondrial membrane potential (MMP). HTTS concentration-response curve fitting determined EC50 values for 79% of tested compounds for at least one of the three endpoints. Trophoblast migratory potential was evaluated for a subset of six prioritized PFAS using a scratch wound assay. Migration, measured as the percent of wound closure after 72 h, was most severely inhibited by exposure to 100 µM perfluorooctanoic acid (PFOA; 72% closure), perfluorooctanesulfonic acid (PFOS; 57% closure), or ammonium perfluoro-2-methyl-3-oxahexanoate (GenX; 79% closure). PFOA and GenX were subsequently evaluated for disrupted expression of 46 genes reported to be vital to trophoblast health. Disrupted regulation of oxidative stress was suggested by altered expression of GPEX1 (300 µM GenX and 3 µM GenX), GPER1 (300 µM GenX), and SOD1 and altered cellular response to xenobiotic stress was indicated by upregulation of the placental efflux transporter, ABCG2 (300 µM GenX, 3 µM GenX, and 100 µM PFOA). These findings suggest the placenta is potentially a direct target of PFAS exposure and indicate that trophoblast cell gene expression and function are disrupted at PFAS levels well below the calculated cytotoxicity threshold (EC50). Future work is needed to determine the mechanism(s) of action of PFAS towards placental trophoblasts.
Collapse
Affiliation(s)
- Bevin E. Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brittany P. Rickard
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
- *Correspondence: Suzanne E. Fenton,
| |
Collapse
|
10
|
Li J, Quan X, Lei S, Chen G, Hong J, Huang Z, Wang Q, Song W, Yang X. LncRNA MEG3 alleviates PFOS induced placental cell growth inhibition through its derived miR-770 targeting PTX3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118542. [PMID: 34801623 DOI: 10.1016/j.envpol.2021.118542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a persistent environmental pollutant. Exposure to PFOS has been associated with abnormal fetal development. The long non-coding RNA (lncRNA) has been showed to play a role in fetal growth restriction (FGR), preeclampsia (PE) and other pregnancy complications. Whether the lncRNA contributes to PFOS-induced toxicity in the placenta remains unknown. In this study, we investigated the function of lncRNA MEG3 and its derived miR-770 in PFOS-induced placental toxicity. Pregnant mice received gavage administration of different concentrations of PFOS (0.5, 2.5, and 12.5 mg/kg/day) from GD0 to GD17, and HTR-8/SVneo cells were treated with PFOS in the concentrations of 0, 10-1, 1, 10 μM. We found that expression levels of miR-770 and its host gene MEG3 were reduced in mice placentas and HTR-8/SVneo cells with exposure of PFOS. A significant hypermethylation was observed at MEG3 promoter in placentas of mice gestational-treated with PFOS. We also confirmed that MEG3 and miR-770 overexpression alleviated the cell growth inhibition induced by PFOS. Furthermore, PTX3 (Pentraxin 3) was identified as the direct target of miR-770 and it was enhanced after PFOS exposure. In summary, our results suggested that MEG3 alleviate PFOS-induced placental cell inhibition through MEG3/miR-770/PTX3 axis.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Xiaojie Quan
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Saifei Lei
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gang Chen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Jiawei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Xinxin Yang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
11
|
PPARγ Regulates Triclosan Induced Placental Dysfunction. Cells 2021; 11:cells11010086. [PMID: 35011648 PMCID: PMC8750171 DOI: 10.3390/cells11010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to the antibacterial agent triclosan (TCS) is associated with abnormal placenta growth and fetal development during pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is crucial in placenta development. However, the mechanism of PPARγ in placenta injury induced by TCS remains unknown. Herein, we demonstrated that PPARγ worked as a protector against TCS-induced toxicity. TCS inhibited cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells. Furthermore, TCS downregulated expression of PPARγ and its downstream viability, migration, angiogenesis-related genes HMOX1, ANGPTL4, VEGFA, MMP-2, MMP-9, and upregulated inflammatory genes p65, IL-6, IL-1β, and TNF-α in vitro and in vivo. Further investigation showed that overexpression or activation (rosiglitazone) alleviated cell viability, migration, angiogenesis inhibition, and inflammatory response caused by TCS, while knockdown or inhibition (GW9662) of PPARγ had the opposite effect. Moreover, TCS caused placenta dysfunction characterized by the significant decrease in weight and size of the placenta and fetus, while PPARγ agonist rosiglitazone alleviated this damage in mice. Taken together, our results illustrated that TCS-induced placenta dysfunction, which was mediated by the PPARγ pathway. Our findings reveal that activation of PPARγ might be a promising strategy against the adverse effects of TCS exposure on the placenta and fetus.
Collapse
|