1
|
Farnaghi M, Poursamar SA, Farzan M, Farzan M, Kouhi M, Rafienia M. Enhancing the biological characteristics of aminolysis surface-modified 3D printed nanocomposite polycaprolactone/nanohydroxyapatite scaffold via gelatin biomacromolecule immobilization: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2025; 249:114505. [PMID: 39799608 DOI: 10.1016/j.colsurfb.2025.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups. Subsequently, gelatin solutions were applied to the scaffolds, and crosslinking with EDC/NHS was performed to increase coating strength. Contact angle measurements revealed a significantly increased surface hydrophilicity post-aminolysis. Aminolysis facilitated uniform gelatin coating formation and distribution. Subsequently, crosslinking enhanced coating durability. The addition of gelatin coating resulted in a notable 20 % increase in scaffold mechanical strength and more than 50 % rise in Young's modulus and exhibited enhancement of biodegradability and bioactivity. Gelatin coated scaffolds also demonstrated improved cell viability and adhesion and over two times higher expression of OPN and ALP genes, suggesting improved biological properties. In addition, in vivo bone formation studies verified the biological enhancement of scaffolds. Utilizing an immobilized crosslinked gelatin biomacromolecule coating effectively enhanced the biological characteristics of 3D printed scaffolds and their potential applications as bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Mohammadhasan Farnaghi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Jin ZH, Ge J, Ning JZ. IBSP Promotes Clear Cell Renal Cell Carcinoma Progression Through the PI3 K/AKT Pathway. Biochem Genet 2025:10.1007/s10528-025-11115-1. [PMID: 40285946 DOI: 10.1007/s10528-025-11115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Our objective is to reveal IBSP expression within clear cell renal cell carcinoma (ccRCC) and the mechanism behind it. IBSP expression and its clinical significance in ccRCC were analyzed using the TCGA dataset. Both Western blotting and immunohistochemistry were utilized to examine IBSP expressions in clinical ccRCC specimens. Moreover, CCK-8, Annexin V-FITC/PI, wound healing, and Transwell assays were utilized to determine IBSP's role in ccRCC progression in vitro. In addition, Western blotting was deployed to ascertain levels of IBSP, PI3K/p-PI3K, and AKT/p-AKT. The TCGA database and our tissue data showcased that, unlike normal tissues, IBSP was significantly overexpressed in ccRCC tissues. Down-regulating IBSP reduces cell abilities to proliferate, migrate, and invade, besides promoting apoptosis in vitro. In vitro and in vivo, IBSP down-regulation inhibited ccRCC growth cells by suppressing PI3K/AKT phosphorylation. IBSP acts as a potential oncogene and could be a prognostic biomarker and therapeutic target for ccRCC. Furthermore, targeting IBSP may enhance existing treatment strategies, such as combining it with PI3K/AKT inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Zhen-Hua Jin
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000, Jiangsu Province, P. R. China
| | - Jun Ge
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical Univesity, Yantai, 264100, Shandong Province, P. R. China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
3
|
Sathiya K, Ganesamoorthi S, Mohan S, Shanmugavadivu A, Selvamurugan N. Natural polymers-based surface engineering of bone scaffolds - A review. Int J Biol Macromol 2024; 282:136840. [PMID: 39461639 DOI: 10.1016/j.ijbiomac.2024.136840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
Collapse
Affiliation(s)
- K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
4
|
Wei L, Yan W, Shah W, Zhang Z, Wang M, Liu B, Xue Z, Cao Y, Hou X, Zhang K, Yan B, Wang X. Advancements and challenges in stem cell transplantation for regenerative medicine. Heliyon 2024; 10:e35836. [PMID: 39247380 PMCID: PMC11379611 DOI: 10.1016/j.heliyon.2024.e35836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stem cell transplantation has emerged as a promising avenue in regenerative medicine, potentially facilitating tissue repair in degenerative diseases and injuries. This review comprehensively examines recent developments and challenges in stem cell transplantation. It explores the identification and isolation of various stem cell types, including embryonic, induced pluripotent, and adult stem cells derived from multiple sources. Additionally, the review highlights the tissue-specific applications of these stem cells, focusing on bone and cartilage regeneration, treatment of neurological disorders, and management of hematological conditions. Future advancements and effective resolution of current challenges will be crucial in fully realizing the potential of stem cell transplantation in regenerative medicine. With responsible and ethical practices, the field can potentially transform disease and injury treatment, ultimately improving the quality of life for countless individuals.
Collapse
Affiliation(s)
- Lingxi Wei
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Wenqi Yan
- Shandong University, Ji Nan, Shandong, 250000, China
| | - Wahid Shah
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Zhengwei Zhang
- Department of Ophthalmology, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, China
| | - Minghe Wang
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Biao Liu
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Zhentong Xue
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Yixin Cao
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Xinyu Hou
- School of Geographic Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kai Zhang
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Beibei Yan
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Xiaogang Wang
- Department of Cataract, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| |
Collapse
|
5
|
Wang J, Zhang L, Wang K. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration. Regen Med 2024; 19:257-278. [PMID: 39118532 PMCID: PMC11321270 DOI: 10.1080/17460751.2024.2343555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 08/10/2024] Open
Abstract
Bioactive ceramics, primarily consisting of bioactive glasses, glass-ceramics, calcium orthophosphate ceramics, calcium silicate ceramics and calcium carbonate ceramics, have received great attention in the past decades given their biocompatible nature and excellent bioactivity in stimulating cell proliferation, differentiation and tissue regeneration. Recent studies have tried to combine bioactive ceramics with bioactive ions, polymers, bioactive proteins and other chemicals to improve their mechanical and biological properties, thus rendering them more valid in tissue engineering scaffolds. This review presents the beneficial properties and potential applications of bioactive ceramic-based materials in dentistry, particularly in the repair and regeneration of dental hard tissue, pulp-dentin complex, periodontal tissue and bone tissue. Moreover, greater insights into the mechanisms of bioactive ceramics and the development of ceramic-based materials are provided.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
6
|
Brown M, Cush G, Adams SB. Use of 3D-Printed Implants in Complex Foot and Ankle Reconstruction. J Orthop Trauma 2024; 38:S17-S22. [PMID: 38502599 DOI: 10.1097/bot.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
SUMMARY Treatment of traumatic critical-sized bone defects remains a challenge for orthopaedic surgeons. Autograft remains the gold standard to address bone loss, but for larger defects, different strategies must be used. The use of 3D-printed implants to address lower extremity trauma and bone loss is discussed with current techniques including bone transport, Masquelet, osteomyocutaneous flaps, and massive allografts. Considerations and future directions of implant design, augmentation, and optimization of the peri-implant environment to maximize patient outcome are reviewed.
Collapse
Affiliation(s)
- Matthew Brown
- Department of Orthopaedic Surgery, Duke University, Durham, NC; and
| | - Gerard Cush
- SUN Orthopaedics of Evangelical, Lewisburg, PA
| | - Samuel B Adams
- Department of Orthopaedic Surgery, Duke University, Durham, NC; and
| |
Collapse
|
7
|
Wu Y, Chen X, Kang J, Yang Y, Zhao X, Liu Y, Qiao J. Calcium silicate/gelatin composite scaffolds with controllable degradation behavior: Fabrication and evaluation. J Mech Behav Biomed Mater 2024; 152:106422. [PMID: 38310813 DOI: 10.1016/j.jmbbm.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Calcium silicate can be used as an excellent material for biodegradable bone scaffolds because it can provide bioactive ions to promote bone regeneration. However, the brittleness and rapid degradation of calcium silicate scaffolds have significantly limited their clinical application. In this work, the calcium silicate scaffolds printed by DLP technology were immersed in a gelatin solution under high vacuum condition to obtain calcium silicate/gelatin composite scaffolds with good mechanical and biological properties. Then, genipin was used as a cross-linker for gelatin to control the degradation properties of the composite scaffolds. The initial compressive strength and toughness of the composite scaffolds were 5.0 times and one order of magnitude higher than those of the pure calcium silicate scaffolds, respectively. The gelatin on the surface of the scaffolds could effectively act as a protective layer to regulate the degradation behaviors of the calcium silicate substrate through controlling the crosslinking degree of the gelatin. After degrading for 14 days, the composite scaffolds at 1.0 % genipin concentration exhibited the highest compressive strength of 8.6 ± 0.8 MPa, much higher than that of the pure ceramic scaffold (1.5 ± 0.3 MPa). It can be found that the toughness of the composite scaffolds were almost over 13.2 times higher than that of the pure ceramic scaffold during degradation, despite the higher toughness loss for the former. Furthermore, the composite scaffolds showed enhanced cell biocompatibility and viability. These results demonstrate that the calcium silicate/gelatin composite scaffolds can be a promising candidate in bone tissue regeneration.
Collapse
Affiliation(s)
- Yanlong Wu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China; Ji Hua Laboratory, Foshan, 528200, China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xu Chen
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China; Ji Hua Laboratory, Foshan, 528200, China
| | - Jianfeng Kang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China
| | - Yongqiang Yang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yaxiong Liu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China; Ji Hua Laboratory, Foshan, 528200, China.
| | - Jian Qiao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China.
| |
Collapse
|
8
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
9
|
Wei Y, Wang Z, Lei L, Han J, Zhong S, Yang X, Gou Z, Chen L. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation. J Orthop Translat 2024; 45:88-99. [PMID: 38516038 PMCID: PMC10955556 DOI: 10.1016/j.jot.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alveolar bone destruction due to periodontal disease often requires a bone graft substitute to reconstruct the anatomical structures and biological functions of the bone tissue. Despite significant advances in the development of foreign ion-doped nonstoichiometric wollastonite bioceramics (CaSiO3, nCSi) for alveolar bone regeneration over the past decade, the in vivo biosafety and osteogenesis of nCSi scaffolds remain uncertain. In this study, we developed a customized porous nCSi scaffold to investigate the in vivo biocompatibility and osteogenic properties of nCSi bioceramics. Methods Six percent Mg-doped nCSi bioceramic scaffolds were fabricated by digital light processing (DLP), and the scaffold morphology, pore architecture, compressive strength, in vitro biodegradation, and apatite-forming ability of the bioceramic scaffolds were investigated systematically. Subsequently, an alveolar bone defect rabbit model was used to evaluate the biocompatibility and osteogenic efficacy of the nCSi bioceramics. Animal weight, hematological test, blood biochemical test, wet weight of the main organs, and pathological examination of the main organs were conducted. Micro-CT and histological staining were performed to analyze the osteogenic potential of the personalized bioceramic scaffolds. Results The nCSi scaffolds exhibited appreciable initial compressive strength (>30 MPa) and mild mechanical decay over time during in vitro biodissolution. In addition, the scaffolds induced apatite remineralization in SBF. Bioceramic scaffolds have been proven to have good biocompatibility in vivo after implantation into the alveolar bone defect of rabbits. No significant effects on the hematological indices, blood biochemical parameters, organ wet weight, or organ histopathology were detected from 3 to 180 days postoperatively. The porous scaffolds exhibited strong bone regeneration capability in the alveolar bone defect model of rabbits. Micro-CT and histological examination showed effective maintenance of bone morphology in the bioceramic scaffold group; however, depressed bone tissue was observed in the control group. Conclusions Our results suggest that personalized nCSi bioceramic scaffolds can be fabricated using the DLP technique. These newly developed strong bioceramic scaffolds exhibit good biocompatibility and osteogenic capability in vivo and have excellent potential as next-generation oral implants. The translational potential of this article Tissue-engineered strategies for alveolar bone repair require a bone graft substitute with appreciable biocompatibility and osteogenic capability. This article provides a systematic investigation of the in vivo biosafety and osteogenic property of nCSi to further development of a silicate-based bioceramics materials for clinical applications.
Collapse
Affiliation(s)
- Yingming Wei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Zhongxiu Wang
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Lihong Lei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Jiayin Han
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Shuaiqi Zhong
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lili Chen
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| |
Collapse
|
10
|
Mudhafar M, Zainol I, Alsailawi H, Zorah M, Karhib MM, Mahmood mahdi N. Preparation and characterization of FsHA/FsCol beads: Cell attachment and cytotoxicity studies. Heliyon 2023; 9:e15838. [PMID: 37206015 PMCID: PMC10189507 DOI: 10.1016/j.heliyon.2023.e15838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
The present study was conducted to prepare the fish scales' hydroxyapatite/collagen beads (FsHA/FsCol) and characterize their biological, physical, and chemical properties. A new method was used to prepare FsHA/FsCol composite beads by infiltrating the beads of FsHA in the solution of FsCol as a green method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) analysis, Fourier-transform infrared (FTIR) spectroscopy analysis and energy dispersive X-ray analysis (EDX), used to evaluate the physical-chemical properties of the synthesized samples. Meanwhile, the cytotoxic and attachment studies of the FsHA/FsCol beads were used to investigate the biological features against the MG-63 human cell line. The results specified the efficiency of the new method, functional groups of FsCol were indicated to be present inside the beads of FsHA according to the XRD analysis which shows the functional peaks of FsCol. The SEM image were conformed successfully use starch as a porous agent to increasing the porous of the FsHA beads after adding 20 wt% of it. Alamar Blue assay has been used to evaluate the cytotoxicity of FsHA/FsCol beads the results were shown 87% average cell viability of the MG-63 human cell line on the beads and attached very well to the surface of the composites, indicating no toxicity being exerted by all the composites at high concentrations.
Collapse
Affiliation(s)
- Mustafa Mudhafar
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ahl Al Bayt, 56001, Karbala, Iraq
- Corresponding author.
| | - Ismail Zainol
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Proton City, 35900, Tanjung Malim, Perak, Malaysia
| | - H.A. Alsailawi
- Department of Biochemistry, Faculty of Medicine, University of Kerbala, 56001, Karbala, Iraq
| | - Mohammed Zorah
- Department of C. T. E, Imam Al-Kadhum College, Dhi Qa, Iraq
| | - Mustafa M. Karhib
- Department of Medical Laboratory Techniques, Al Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | | |
Collapse
|
11
|
Murugaiyan K, Amirthalingam S, Hwang NSY, Jayakumar R. Role of FGF-18 in Bone Regeneration. J Funct Biomater 2023; 14:jfb14010036. [PMID: 36662083 PMCID: PMC9864085 DOI: 10.3390/jfb14010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In tissue engineering, three key components are cells, biological/mechanical cues, and scaffolds. Biological cues are normally proteins such as growth factors and their derivatives, bioactive molecules, and the regulators of a gene. Numerous growth factors such as VEGF, FGF, and TGF-β are being studied and applied in different studies. The carriers used to release these growth factors also play an important role in their functioning. From the early part of the 1990s, more research has beenconductedon the role of fibroblast growth factors on the various physiological functions in our body. The fibroblast growth factor family contains 22 members. Fibroblast growth factors such as 2, 9, and 18 are mainly associated with the differentiation of osteoblasts and in bone regeneration. FGF-18 stimulates the PI3K/ERK pathway and smad1/5/8 pathway mediated via BMP-2 by blocking its antagonist, which is essential for bone formation. FGF-18 incorporated hydrogel and scaffolds had showed enhanced bone regeneration. This review highlights these functions and current trends using this growth factor and potential outcomes in the field of bone regeneration.
Collapse
Affiliation(s)
- Kavipriya Murugaiyan
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | | | - Nathaniel Suk-Yeon Hwang
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: or
| |
Collapse
|
12
|
Wang J, Lei J, Hu Y, Meng L, Li W, Zhu F, Xie B, Wang Y, Yang C, Wu Q. Calcium Silicate Whiskers-Enforced Poly(Ether-Ether-Ketone) Composites with Improved Mechanical Properties and Biological Activities for Bearing Bone Reconstruction. Macromol Biosci 2022; 22:e2200321. [PMID: 36057971 DOI: 10.1002/mabi.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Poly (ether-ether-ketone) (PEEK) displays promising potential application in bone tissue repair and orthopedic surgery due to its good biocompatibility and chemical stability. However, the bio-inertness and poor mechanical strength of PEEK greatly limit its application in load-bearing bones. In this study, calcium silicate whiskers (CSws) are synthesized and then compounded with PEEK to fabricate the PEEK/CSw composites with excellent mechanical properties, biological activity. Compared with PEEK, the PEEK/CSw composites exhibited higher hydrophilicity and ability to deposit hydroxyapatite on the surface. CSws are evenly dispersed in the PEEK matrix at 10 wt% content and the mechanical strength of the PEEK/CSw composite is ≈96.9 ± 2.4 MPa, 136.3 ± 2.4 MPa, and 266.0 ± 3.2 MPa, corresponding to tensile strength, compressive strength, and bending strength, respectively, which is 20%, 18%, and 52% higher than that of pure PEEK. The composites improve the adhesion, proliferation, and osteogenic differentiation of BMSCs. Furthermore, PEEK/CSw composite remarkably improves bone formation and osteointegration, which has higher bone repair capacity than PEEK. These results demonstrate that the PEEK/CSw scaffolds display superior abilities to integrate with the host bone and promising potential in the field of load bearing bone repair.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yanru Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lihui Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenchao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fang Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Material and Engineering Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
13
|
Mayfield CK, Ayad M, Lechtholz-Zey E, Chen Y, Lieberman JR. 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering (Basel) 2022; 9:680. [PMID: 36421080 PMCID: PMC9687148 DOI: 10.3390/bioengineering9110680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2023] Open
Abstract
The management and definitive treatment of segmental bone defects in the setting of acute trauma, fracture non-union, revision joint arthroplasty, and tumor surgery are challenging clinical problems with no consistently satisfactory solution. Orthopaedic surgeons are developing novel strategies to treat these problems, including three-dimensional (3D) printing combined with growth factors and/or cells. This article reviews the current strategies for management of segmental bone loss in orthopaedic surgery, including graft selection, bone graft substitutes, and operative techniques. Furthermore, we highlight 3D printing as a technology that may serve a major role in the management of segmental defects. The optimization of a 3D-printed scaffold design through printing technique, material selection, and scaffold geometry, as well as biologic additives to enhance bone regeneration and incorporation could change the treatment paradigm for these difficult bone repair problems.
Collapse
Affiliation(s)
- Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Mina Ayad
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Elizabeth Lechtholz-Zey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Yong Chen
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angleles, CA 90089, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Tan G, Chen R, Tu X, Guo L, Guo L, Xu J, Zhang C, Zou T, Sun S, Jiang Q. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds. Front Bioeng Biotechnol 2022; 10:973886. [PMID: 36061449 PMCID: PMC9438739 DOI: 10.3389/fbioe.2022.973886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Employing scaffolds containing cell–derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM–loaded scaffolds (RAOECs–ECM scaffold and RBMSCs–ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT–PCR). In vivo, full–thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague–Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro–CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM–loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel–like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM–loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs–ECM scaffold and RBMSCs–ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.
Collapse
Affiliation(s)
- Guozhong Tan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongfeng Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinran Tu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liyang Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lvhua Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingyi Xu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| |
Collapse
|
15
|
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review. Bioengineering (Basel) 2022; 9:bioengineering9080388. [PMID: 36004914 PMCID: PMC9404869 DOI: 10.3390/bioengineering9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future.
Collapse
|
16
|
Lee JJ, Ng HY, Lin YH, Lin TJ, Kao CT, Shie MY. The Synergistic Effect of Cyclic Tensile Force and Periodontal Ligament Cell-Laden Calcium Silicate/Gelatin Methacrylate Auxetic Hydrogel Scaffolds for Bone Regeneration. Cells 2022; 11:2069. [PMID: 35805154 PMCID: PMC9265804 DOI: 10.3390/cells11132069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The development of 3D printing technologies has allowed us to fabricate complex novel scaffolds for bone regeneration. In this study, we reported the incorporation of different concentrations of calcium silicate (CS) powder into fish gelatin methacrylate (FGelMa) for the fabrication of CS/FGelMa auxetic bio-scaffolds using 3D printing technology. Our results showed that CS could be successfully incorporated into FGelMa without influencing the original structural components of FGelMa. Furthermore, it conveyed that CS modifications both the mechanical properties and degradation rates of the scaffolds were improved in accordance with the concentrations of CS upon modifications of CS. In addition, the presence of CS enhanced the adhesion and proliferation of human periodontal ligament cells (hPDLs) cultured in the scaffold. Further osteogenic evaluation also confirmed that CS was able to enhance the osteogenic capabilities via activation of downstream intracellular factors such as pFAK/FAK and pERK/ERK. More interestingly, it was noted that the application of extrinsic biomechanical stimulation to the auxetic scaffolds further enhanced the proliferation and differentiation of hPDLs cells and secretion of osteogenic-related markers when compared to CS/FGelMa hydrogels without tensile stimulation. This prompted us to explore the related mechanism behind this interesting phenomenon. Subsequent studies showed that biomechanical stimulation works via YAP, which is a biomechanical cue. Taken together, our results showed that novel auxetic scaffolds could be fabricated by combining different aspects of science and technology, in order to improve the future chances of clinical applications for bone regeneration.
Collapse
Affiliation(s)
- Jian-Jr Lee
- School of Medicine, China Medical University, Taichung City 406040, Taiwan;
- Department of Plastic & Reconstruction Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Hooi-Yee Ng
- Department of Education, China Medical University Hospital, Taichung City 404332, Taiwan;
| | - Yen-Hong Lin
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung City 406040, Taiwan;
| | - Ting-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan;
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| |
Collapse
|
17
|
Additive Manufacturing of Caffeic Acid-Inspired Mineral Trioxide Aggregate/Poly-ε-Caprolactone Scaffold for Regulating Vascular Induction and Osteogenic Regeneration of Dental Pulp Stem Cells. Cells 2021; 10:cells10112911. [PMID: 34831134 PMCID: PMC8616324 DOI: 10.3390/cells10112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Mineral trioxide aggregate (MTA) is a common biomaterial used in endodontics regeneration due to its antibacterial properties, good biocompatibility and high bioactivity. Surface modification technology allows us to endow biomaterials with the necessary biological targets for activation of specific downstream functions such as promoting angiogenesis and osteogenesis. In this study, we used caffeic acid (CA)-coated MTA/polycaprolactone (PCL) composites and fabricated 3D scaffolds to evaluate the influence on the physicochemical and biological aspects of CA-coated MTA scaffolds. As seen from the results, modification of CA does not change the original structural characteristics of MTA, thus allowing us to retain the properties of MTA. CA-coated MTA scaffolds were shown to have 25% to 55% higher results than bare scaffold. In addition, CA-coated MTA scaffolds were able to significantly adsorb more vascular endothelial growth factors (p < 0.05) secreted from human dental pulp stem cells (hDPSCs). More importantly, CA-coated MTA scaffolds not only promoted the adhesion and proliferation behaviors of hDPSCs, but also enhanced angiogenesis and osteogenesis. Finally, CA-coated MTA scaffolds led to enhanced subsequent in vivo bone regeneration of the femur of rabbits, which was confirmed using micro-computed tomography and histological staining. Taken together, CA can be used as a potently functional bioactive coating for various scaffolds in bone tissue engineering and other biomedical applications in the future.
Collapse
|
18
|
Lai WY, Lee TH, Chen JX, Ng HY, Huang TH, Shie MY. Synergies of Human Umbilical Vein Endothelial Cell-Laden Calcium Silicate-Activated Gelatin Methacrylate for Accelerating 3D Human Dental Pulp Stem Cell Differentiation for Endodontic Regeneration. Polymers (Basel) 2021; 13:polym13193301. [PMID: 34641117 PMCID: PMC8512667 DOI: 10.3390/polym13193301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Centers for Disease Control and Prevention, tooth caries is a common problem affecting 9 out of every 10 adults worldwide. Dentin regeneration has since become one of the pressing issues in dentistry with tissue engineering emerging as a potential solution for enhancing dentin regeneration. In this study, we fabricated cell blocks with human dental pulp stem cells (hDPSCs)-laden alginate/fish gelatin hydrogels (Alg/FGel) at the center of the cell block and human umbilical vascular endothelial cells (HUVEC)-laden Si ion-infused fish gelatin methacrylate (FGelMa) at the periphery of the cell block. 1H NMR and FTIR results showed the successful fabrication of Alg/FGel and FGelMa. In addition, Si ions in the FGelMa were noted to be bonded via covalent bonds and the increased number of covalent bonds led to an increase in mechanical properties and improved degradation of FGelMa. The Si-containing FGelMa was able to release Si ions, which subsequently significantly not only enhanced the expressions of angiogenic-related protein, but also secreted some cytokines to regulate odontogenesis. Further immunofluorescence results indicated that the cell blocks allowed interactions between the HUVEC and hDPSCs, and taken together, were able to enhance odontogenic-related markers' expression, such as alkaline phosphatase (ALP), dentin matrix phosphoprotein-1 (DMP-1), and osteocalcin (OC). Subsequent Alizarin Red S stain confirmed the benefits of our cell block and demonstrated that such a novel combination and modification of biomaterials can serve as a platform for future clinical applications and use in dentin regeneration.
Collapse
Affiliation(s)
- Wei-Yun Lai
- School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan;
| | - Tzu-Hsin Lee
- Department of Orthodontics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Jian-Xun Chen
- School of Medicine, China Medical University, Taichung 40447, Taiwan; (J.-X.C.); (H.-Y.N.)
- Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan
| | - Hooi-Yee Ng
- School of Medicine, China Medical University, Taichung 40447, Taiwan; (J.-X.C.); (H.-Y.N.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan;
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (T.-H.H.); (M.-Y.S.)
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
- School of Dentistry, China Medical University, Taichung 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (T.-H.H.); (M.-Y.S.)
| |
Collapse
|
19
|
The Development of Light-Curable Calcium-Silicate-Containing Composites Used in Odontogenic Regeneration. Polymers (Basel) 2021; 13:polym13183107. [PMID: 34578012 PMCID: PMC8468725 DOI: 10.3390/polym13183107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Pulp regeneration is one of the most successful areas in the field of tissue regeneration, despite its current limitations. The biocompatibility of endodontic biomaterials is essential in securing the oral microenvironment and supporting pulp tissue regeneration. Therefore, the objective of this study was to investigate the new light-curable calcium silicate (CS)-containing polyethylene glycol diacrylate (PEGDA) biocomposites’ regulation of human dental pulp stem cells (hDPSCs) in odontogenic-related regeneration. The CS-containing PEGDA (0 to 30 wt%) biocomposites are applied to endodontics materials to promote their mechanical, bioactive, and biological properties. Firstly, X-ray diffraction and Fourier-transform infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the PEGDA. The diameter tension strength of the CS-containing PEGDA composite was significantly higher than that of normal PEGDA, and a different microstructure was detected on the surface. Samples were analyzed for their surface characteristics and Ca/Si ion-release profiles after soaking in simulated body fluid for different periods of time. The CS30 group presented better hDPSC adhesion and proliferation in comparison with CS0. Higher values of odontogenic-related biomarkers were found in hDPSCs on CS30. Altogether, these results prove the potential of light-curable CS-containing PEGDA composites as part of a ‘point-of-care’ strategy for application in odontogenesis-related regeneration.
Collapse
|
20
|
Lin YT, Hsu TT, Liu YW, Kao CT, Huang TH. Bidirectional Differentiation of Human-Derived Stem Cells Induced by Biomimetic Calcium Silicate-Reinforced Gelatin Methacrylate Bioink for Odontogenic Regeneration. Biomedicines 2021; 9:biomedicines9080929. [PMID: 34440133 PMCID: PMC8394247 DOI: 10.3390/biomedicines9080929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Tooth loss or damage is a common problem affecting millions of people worldwide, and it results in significant impacts on one’s quality of life. Dental regeneration with the support of stem cell-containing scaffolds has emerged as an alternative treatment strategy for such cases. With this concept in mind, we developed various concentrations of calcium silicate (CS) in a gelatin methacryloyl (GelMa) matrix and fabricated human dental pulp stem cells (hDPSCs)-laden scaffolds via the use of a bioprinting technology in order to determine their feasibility in promoting odontogenesis. The X-ray diffraction and Fourier transform-infrared spectroscopy showed that the incorporation of CS increased the number of covalent bonds in the GelMa hydrogels. In addition, rheological analyses were conducted for the different concentrations of hydrogels to evaluate their sol–gel transition temperature. It was shown that incorporation of CS improved the printability and printing quality of the scaffolds. The printed CS-containing scaffolds were able to release silicate (Si) ions, which subsequently significantly enhanced the activation of signaling-related markers such as ERK and significantly improved the expression of odontogenic-related markers such as alkaline phosphatase (ALP), dentin matrix protein-1 (DMP-1), and osteocalcin (OC). The calcium deposition assays were also significantly enhanced in the CS-containing scaffold. Our results demonstrated that CS/GelMa scaffolds were not only enhanced in terms of their physicochemical behaviors but the odontogenesis of the hDPSCs was also promoted as compared to GelMa scaffolds. These results demonstrated that CS/GelMa scaffolds can serve as cell-laden materials for future clinical applications and use in dentin regeneration.
Collapse
Affiliation(s)
- Yi-Ting Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
| | - Tuan-Ti Hsu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; (T.-T.H.); (Y.-W.L.)
| | - Yu-Wei Liu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; (T.-T.H.); (Y.-W.L.)
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-T.L.); (C.-T.K.)
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-22967979 (ext. 3700)
| |
Collapse
|
21
|
Chen CY, Shie MY, Lee AKX, Chou YT, Chiang C, Lin CP. 3D-Printed Ginsenoside Rb1-Loaded Mesoporous Calcium Silicate/Calcium Sulfate Scaffolds for Inflammation Inhibition and Bone Regeneration. Biomedicines 2021; 9:biomedicines9080907. [PMID: 34440111 PMCID: PMC8389633 DOI: 10.3390/biomedicines9080907] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
Bone defects are commonly found in the elderly and athletic population due to systemic diseases such as osteoporosis and trauma. Bone scaffolds have since been developed to enhance bone regeneration by acting as a biological extracellular scaffold for cells. The main advantage of a bone scaffold lies in its ability to provide various degrees of structural support and growth factors for cellular activities. Therefore, we designed a 3D porous scaffold that can not only provide sufficient mechanical properties but also carry drugs and promote cell viability. Ginsenoside Rb1 (GR) is an extract from panax ginseng, which has been used for bone regeneration and repair since ancient Chinese history. In this study, we fabricated scaffolds using various concentrations of GR with mesoporous calcium silicate/calcium sulfate (MSCS) and investigated the scaffold’s physical and chemical characteristic properties. PrestoBlue, F-actin staining, and ELISA were used to demonstrate the effect of the GR-contained MSCS scaffold on cell proliferation, morphology, and expression of the specific osteogenic-related protein of human dental pulp stem cells (hDPSCs). According to our data, hDPSCs cultivated in GR-contained MSCS scaffold had preferable abilities of proliferation and higher expression of the osteogenic-related protein and could effectively inhibit inflammation. Finally, in vivo performance was assessed using histological results that revealed the GR-contained MSCS scaffolds were able to further achieve more effective hard tissue regeneration than has been the case in the past. Taken together, this study demonstrated that a GR-containing MSCS 3D scaffold could be used as a potential alternative for future bone tissue engineering studies and has good potential for clinical use.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| | - Alvin Kai-Xing Lee
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Yun-Ting Chou
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung 406040, Taiwan;
| | - Chun Chiang
- School of Dentistry, China Medical University, Taichung City 406040, Taiwan; (M.-Y.S.); (C.C.)
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10617, Taiwan;
- Department of Dentistry, National Taiwan University Hospital, Taipei 100229, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: ; Tel.: +886-2-23831346
| |
Collapse
|