1
|
Pieniawska M, Rassek K, Skwara B, Żurawek M, Ziółkowska-Suchanek I, Visser L, Lodewijk M, Sokołowska-Wojdyło M, Olszewska B, Nowicki RJ, Stein T, Dańczak-Pazdrowska A, Polańska A, Szymoniak-Lipska M, Rozwadowska N, Iżykowska K. HDAC10 and its implications in Sézary syndrome pathogenesis. Front Cell Dev Biol 2025; 13:1480192. [PMID: 39958888 PMCID: PMC11825767 DOI: 10.3389/fcell.2025.1480192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a group of rare hematological malignancies characterized by infiltration of malignant T-cells into the skin. Two main types of CTCL constitute of Mycosis Fungoides (MF), a more indolent form of the disease, and Sézary syndrome (SS), the aggressive and leukemic variant with blood involvement. Sézary syndrome presents a significant clinical challenge due to its very aggressive nature, poor prognosis, and treatment resistance, and to date, the disease remains incurable. Histone deacetylase inhibitors have gained attention in CTCL treatment with promising results, but they expose limited specificity and strong side effects. Recent genomic studies underscore the role of epigenetic modifiers in CTCL pathogenesis, prompting an investigation into HDAC10, a member of class IIb HDACs, in SS. HDAC10 was investigated in different cancers, revealing its involvement in cell cycle regulation, apoptosis, and autophagy, but its role in CTCL is unknown. In this study we aimed to determine the role of HDAC10 in SS, focusing on its cellular localization, role in cell growth, and therapeutic potential. We indicated that HDAC10 is overexpressed in SS patients and located mainly in the cytoplasm. Its overexpression leads to an inhibitory effect on apoptosis progression when exposed to the pro-apoptotic compound Camptothecin (CPT). Knockdown of HDAC10 resulted in reduced cell growth and induction of apoptosis and autophagy, highlighting its potential importance in CTCL pathogenesis. Whole transcriptome analysis indicated that HDAC10 is associated with crucial cancer-related pathways, for example, hematopoietic cell lineage, PI3K-Akt signaling pathway, Ras signaling pathway, MAPK signaling pathway or JAK-STAT signaling pathway, which are critical for the survival and proliferation of malignant T cells. Inhibition of HDAC10 with selective HDAC10i increased the sensitivity of Sézary cells to the pro-apoptotic CPT. Our findings demonstrate that HDAC10 plays a key role in the molecular background of Sézary syndrome, highlighting its importance in the cellular mechanisms of the disease.
Collapse
Affiliation(s)
- Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bogumiła Skwara
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Monique Lodewijk
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Dermatology, Venereology and Allergology, University Clinical Centre, Gdańsk, Poland
| | - Berenika Olszewska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Dermatology, Venereology and Allergology, University Clinical Centre, Gdańsk, Poland
| | - Tomasz Stein
- Department of Dermatology, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Adriana Polańska
- Department of Dermatology and Venereology, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | |
Collapse
|
2
|
Reichelt P, Bernhart S, Wilke F, Schwind S, Cross M, Platzbecker U, Behre G. MicroRNA Expression Patterns Reveal a Role of the TGF-β Family Signaling in AML Chemo-Resistance. Cancers (Basel) 2023; 15:5086. [PMID: 37894453 PMCID: PMC10605523 DOI: 10.3390/cancers15205086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Resistance to chemotherapy is ultimately responsible for the majority of AML-related deaths, making the identification of resistance pathways a high priority. Transcriptomics approaches can be used to identify genes regulated at the level of transcription or mRNA stability but miss microRNA-mediated changes in translation, which are known to play a role in chemo-resistance. To address this, we compared miRNA profiles in paired chemo-sensitive and chemo-resistant subclones of HL60 cells and used a bioinformatics approach to predict affected pathways. From a total of 38 KEGG pathways implicated, TGF-β/activin family signaling was selected for further study. Chemo-resistant HL60 cells showed an increased TGF-β response but were not rendered chemo-sensitive by specific inhibitors. Differential pathway expression in primary AML samples was then investigated at the RNA level using publically available gene expression data in the TGCA database and by longitudinal analysis of pre- and post-resistance samples available from a limited number of patients. This confirmed differential expression and activity of the TGF-β family signaling pathway upon relapse and revealed that the expression of TGF-β and activin signaling genes at diagnosis was associated with overall survival. Our focus on a matched pair of cytarabine sensitive and resistant sublines to identify miRNAs that are associated specifically with resistance, coupled with the use of pathway analysis to rank predicted targets, has thus identified the activin/TGF-β signaling cascade as a potential target for overcoming resistance in AML.
Collapse
Affiliation(s)
- Paula Reichelt
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany (M.C.); (U.P.)
| | - Stephan Bernhart
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany;
| | - Franziska Wilke
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany (M.C.); (U.P.)
| | - Sebastian Schwind
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany (M.C.); (U.P.)
| | - Michael Cross
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany (M.C.); (U.P.)
| | - Uwe Platzbecker
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany (M.C.); (U.P.)
| | - Gerhard Behre
- Dessau Medical Center, Clinic for Internal Medicine I—Gastroenterology, Hematology, Oncology, Hemostaseology, Palliative Medicine, Nephrology, Infectious Diseases, Pneumology, 06847 Dessau-Rosslau, Germany;
| |
Collapse
|
3
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Kt RD, Karthick D, Saravanaraj KS, Jaganathan MK, Ghorai S, Hemdev SP. The Roles of MicroRNA in Pancreatic Cancer Progression. Cancer Invest 2022; 40:700-709. [PMID: 35333689 DOI: 10.1080/07357907.2022.2057526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a poor patient survival rate in comparison with other cancer types, even after targeted therapy, chemotherapy, and immunotherapy. Therefore, a great deal needs to be done to gain a better understanding of the biology and identification of prognostic and predictive markers for the development of superior therapies. The microRNAs (miRNAs) belong to small non-coding RNAs that regulate post-transcriptional gene expression. Several shreds of evidence indicate that miRNAs play an important role in the pathogenesis of pancreatic cancer. Here we review the recent developments in miRNAs and their target role in the development, metastasis, migration, and invasion.
Collapse
Affiliation(s)
- Ramya Devi Kt
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthick
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Kirtikesav Salem Saravanaraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Uttar Dinajpur, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Xu PC, You M, Yu SY, Luan Y, Eldani M, Caffrey TC, Grandgenett PM, O'Connell KA, Shukla SK, Kattamuri C, Hollingsworth MA, Singh PK, Thompson TB, Chung S, Kim SY. Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Sci Rep 2022; 12:1659. [PMID: 35102236 PMCID: PMC8803848 DOI: 10.1038/s41598-022-05660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients display distinct phenotypes of cachexia development, with either adipose tissue loss preceding skeletal muscle wasting or loss of only adipose tissue. Activin A levels were measured in serum and analyzed in tumor specimens of both a cohort of Stage IV PDAC patients and the genetically engineered KPC mouse model. Our data revealed that serum activin A levels were significantly elevated in Stage IV PDAC patients in comparison to age-matched non-cancer patients. Little is known about the role of activin A in adipose tissue wasting in the setting of PDAC cancer cachexia. We established a correlation between elevated activin A and remodeling of visceral adipose tissue. Atrophy and fibrosis of visceral adipose tissue was examined in omental adipose tissue of Stage IV PDAC patients and gonadal adipose tissue of an orthotopic mouse model of PDAC. Remarkably, white visceral adipose tissue from both PDAC patients and mice exhibited decreased adipocyte diameter and increased fibrotic deposition. Strikingly, expression of thermogenic marker UCP1 in visceral adipose tissues of PDAC patients and mice remained unchanged. Thus, we propose that activin A signaling could be relevant to the acceleration of visceral adipose tissue wasting in PDAC-associated cachexia.
Collapse
Affiliation(s)
- Pauline C Xu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mikyoung You
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA
| | - Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maya Eldani
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kelly A O'Connell
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA.
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|