1
|
Lin W, Wang S, Liu R, Zhang D, Zhang J, Qi X, Li Z, Miao M, Cai X, Su G. Research progress of cPLA2 in cardiovascular diseases (Review). Mol Med Rep 2025; 31:103. [PMID: 39981923 PMCID: PMC11868774 DOI: 10.3892/mmr.2025.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Cytoplasmic phospholipase A2 (cPLA2) is a vital member of the PLA2 family. Studies have demonstrated that cPLA2 plays a key role in various inflammatory‑related diseases and cancers. However, limited research has focused on cPLA2 in cardiovascular diseases. The present review discussed and summarized the research progress on cPLA2 in atherosclerosis, cardiomyopathy, myocardial ischemia‑reperfusion injury and other related conditions. It also highlighted the critical molecular mechanisms by which cPLA2 regulates the pathophysiological processes of vascular endothelial cells, platelets and myocardial cells in cardiovascular diseases. Current studies confirm that cPLA2 plays an important role in cardiovascular diseases and has the potential to become a therapeutic target for the diagnosis, treatment evaluation and prognosis of these conditions. The present review systematically explored the significant role of cPLA2 in cardiovascular diseases and elaborated on its underlying molecular mechanisms. The findings aimed to refine the theoretical understanding of cardiovascular disease pathogenesis and provide a foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Wenyu Lin
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Ronghan Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Dan Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Jiaxing Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaohan Qi
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Zheng Li
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Meng Miao
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
2
|
Lorincz-Comi N, Cheng F. Bayesian estimation of shared polygenicity identifies drug targets and repurposable medicines for human complex diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.17.25324106. [PMID: 40166559 PMCID: PMC11957083 DOI: 10.1101/2025.03.17.25324106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Complex diseases may share portions of their polygenic architectures which can be leveraged to identify drug targets with low off-target potential or repurposable candidates. However, the literature lacks methods which can make these inferences at scale using publicly available data. Methods We introduce a Bayesian model to estimate the polygenic structure of a trait using only gene-based association test statistics from GWAS summary data and returns gene-level posterior risk probabilities (PRPs). PRPs were used to infer shared polygenicity between 496 trait pairs and we introduce measures that can prioritize drug targets with low off-target effects or drug repurposing potential. Results Across 32 traits, we estimated that 69.5 to 97.5% of disease-associated genes are shared between multiple traits, and the estimated number of druggable genes that were only associated with a single disease ranged from 1 (multiple sclerosis) to 59 (schizophrenia). Estimating the shared genetic architecture of ALS with all other traits identified the KIT gene as a potentially harmful drug target because of its deleterious association with triglycerides, but also identified TBK1 and SCN11B as putatively safer because of their non-association with any of the other 31 traits. We additionally found 21 genes which are candidate repourposable targets for Alzheimer's disease (AD) (e.g., PLEKHA1, PPIB) and 5 for ALS (e.g., GAK, DGKQ). Conclusions The sets of candidate drug targets which have limited off-target potential are generally smaller compared to the sets of pleiotropic and putatively repurposable drug targets, but both represent promising directions for future experimental studies.
Collapse
Affiliation(s)
- Noah Lorincz-Comi
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Dash BP, Freischmidt A, Helferich AM, Ludolph AC, Andersen PM, Weishaupt JH, Hermann A. Upregulated miR-10b-5p as a potential miRNA signature in amyotrophic lateral sclerosis patients. Front Cell Neurosci 2024; 18:1457704. [PMID: 39588282 PMCID: PMC11586771 DOI: 10.3389/fncel.2024.1457704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset disease marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Death in most patients usually occurs within 2-4 years after symptoms onset. Despite promising progress in delineating underlying mechanisms, such as disturbed proteostasis, DNA/RNA metabolism, splicing or proper nucleocytoplasmic shuttling, there are no effective therapies for the vast majority of cases. A reason for this might be the disease heterogeneity and lack of substantial clinical and molecular biomarkers. The identification and validation of such pathophysiology driven biomarkers could be useful for early diagnosis and treatment stratification. Recent advances in next generation RNA-sequencing approaches have provided important insights to identify key changes of non-coding RNAs (ncRNAs) implicated with ALS disease. Especially, microRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression to target several genes/pathways by degrading messenger RNAs (mRNAs) or repressing levels of gene expression. In this study, we expand our previous work to identify top-regulated differentially expressed (DE)-miRNAs by combining different normalizations to search for important and generalisable pathomechanistic dysregulations in ALS as putative novel biomarkers of the disease. For this we performed a consensus pipeline of existing datasets to investigate the transcriptomic profile (mRNAs and miRNAs) of MN cell lines from iPSC-derived SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to identify potential signatures and their related pathways associated with neurodegeneration. Transcriptional profiling of miRNA-mRNA interactions from MN cell lines in ALS patients revealed differential expression of genes showed greater vulnerability to KEAP1-NRF2 stress response pathway, sharing a common molecular denominator linked to both disease conditions. We also reported that mutations in above genes led to significant upregulation of the top candidate miR-10b-5p, which we could validate in immortalized lymphoblast cell lines (LCLs) derived from sporadic and familial ALS patients and postmortem tissues of familial ALS patients. Collectively, our findings suggest that miRNA analysis simultaneously performed in various human biological samples may reveal shared miRNA profiles potentially useful as a biomarker of the disease.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | | | | | - Albert C. Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
4
|
Sharma R, Mehan S, Khan Z, Das Gupta G, Narula AS. Therapeutic potential of oleanolic acid in modulation of PI3K/Akt/mTOR/STAT-3/GSK-3β signaling pathways and neuroprotection against methylmercury-induced neurodegeneration. Neurochem Int 2024; 180:105876. [PMID: 39368746 DOI: 10.1016/j.neuint.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that gradually deteriorates motor neurons, leading to demyelination, muscle weakness, and eventually respiratory failure. The disease involves several pathological processes, such as increased glutamate levels, mitochondrial dysfunction, and persistent neuroinflammation, often exacerbated by environmental toxins like mercury. This study explores the therapeutic potential of Olea europaea active phytoconstituents oleanolic acid (OLA) against ALS by targeting the overactivated PI3K/Akt/mTOR/STAT-3/GSK-3β signalling pathways. Methods involved in-silico studies, in vitro and in vivo experiments in which varying doses of methylmercury 5 mg/kg, p.o. and OLA (100 and 200 mg/kg, i.p.) were administered to rats for 42 days. Behavioural assessments, gross morphological, histopathological, and neurochemical parameters were measured in cerebrospinal fluid (CSF), blood plasma, and brain homogenates (cerebral cortex, hippocampus, striatum, midbrain, cerebellum) along with complete blood count (CBC) analysis. Results revealed OLA's significant neuroprotective properties. OLA effectively modulated targeted pathways, reducing pro-inflammatory cytokines, restoring normal levels of myelin basic protein (MBP) and neurofilament light chain (NEFL), and reducing histopathological changes. Gross pathological studies indicated less tissue damage, while CBC analysis showed improved hematology parameters. Additionally, the combination of OLA and edaravone (10 mg/kg, i.p.) demonstrated enhanced efficacy, improving motor functions and extending survival in ALS model rats. In conclusion, OLA exhibits significant therapeutic potential for ALS, acting as a potent modulator of key pathological signaling pathways. The findings suggest the feasibility of integrating OLA into existing treatment regimens, potentially improving clinical outcomes for ALS patients. However, further research must validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
5
|
Hoyt KR, Horning P, Georgette Ang P, Karelina K, Obrietan K. Ribosomal S6 kinase signaling regulates neuronal viability during development and confers resistance to excitotoxic cell death in mature neurons. Neuroscience 2024; 558:1-10. [PMID: 39137868 DOI: 10.1016/j.neuroscience.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The Ribosomal S6 Kinase (RSK) family of serine/threonine kinases function as key downstream effectors of the MAPK signaling cascade. In the nervous system, RSK signaling plays crucial roles in neuronal development and contributes to activity-dependent neuronal plasticity. This study examined the role of RSK signaling in cell viability during neuronal development and in neuroprotection in the mature nervous system. Using neuronal cell-culture-based profiling, we found that suppressing RSK signaling led to significant cell death in developing primary neuronal cultures. To this end, treatment with the RSK inhibitors BiD1870 or SL0101 on the first day of culturing resulted in over 80% cell death. In contrast, more mature cultures showed attenuated cell death upon RSK inhibition. Inhibition of RSK signaling during early neuronal development also disrupted neurite outgrowth and cell growth. In maturing hippocampal explant cultures, treatment with BiD1870 had minimal effects on cell viability, but led to a striking augmentation of NMDA-induced cell death. Finally, we used the endothelin 1 (ET-1) model of ischemia to examine the neuroprotective effects of RSK signaling in the mature hippocampus in vivo. Notably, in the absence of RSK inhibition, the granule cell layer (GCL) was resistant to the effects of ET-1; However, disruption of RSK signaling (via the microinjection of BiD1870) prior to ET-1 injection triggered cell death within the GCL, thus indicating a neuroprotective role for RSK signaling in the mature nervous system. Together these data reveal distinct, developmentally-defined, roles for RSK signaling in the nervous system.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Paul Horning
- Department of Neuroscience, Ohio State University, Columbus, OH, USA; Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Pia Georgette Ang
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Yang CH, Huang JL, Tsai LK, Taniar D, Pai TW. An Effective DNA Methylation Biomarker Screening Mechanism for Amyotrophic Lateral Sclerosis (ALS) Based on Comorbidities and Gene Function Analysis. Bioengineering (Basel) 2024; 11:1020. [PMID: 39451396 PMCID: PMC11505182 DOI: 10.3390/bioengineering11101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
This study used epigenomic methylation differential expression analysis to identify primary biomarkers in patients with amyotrophic lateral sclerosis (ALS). We combined electronic medical record datasets from MIMIC-IV (United States) and NHIRD (Taiwan) to explore ALS comorbidities in depth and discover any comorbidity-related biomarkers. We also applied word2vec to these two clinical diagnostic medical databases to measure similarities between ALS and other similar diseases and evaluated the statistical assessment of the odds ratio to discover significant comorbidities for ALS subjects. Important and representative DNA methylation biomarker candidates could be effectively selected by cross-comparing similar diseases to ALS, comorbidity-related genes, and differentially expressed methylation loci for ALS subjects. The screened epigenomic and comorbidity-related biomarkers were clustered based on their genetic functions. The candidate DNA methylation biomarkers associated with ALS were comprehensively discovered. Gene ontology annotations were then applied to analyze and cluster the candidate biomarkers into three different groups based on gene function annotations. The results showed that a potential testing kit for ALS detection can be composed of SOD3, CACNA1H, and ERBB4 for effective early screening of ALS using blood samples. By developing an effective DNA methylation biomarker screening mechanism, early detection and prophylactic treatment of high-risk ALS patients can be achieved.
Collapse
Affiliation(s)
- Cing-Han Yang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Jhen-Li Huang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City 100229, Taiwan;
| | - David Taniar
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia;
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan; (C.-H.Y.); (J.-L.H.)
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| |
Collapse
|
7
|
Crayle JI, Rampersaud E, Myers JR, Wuu J, Taylor JP, Wu G, Benatar M, Bedlack RS. Genetic Associations With an Amyotrophic Lateral Sclerosis Reversal Phenotype. Neurology 2024; 103:e209696. [PMID: 39079071 PMCID: PMC11286288 DOI: 10.1212/wnl.0000000000209696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The term "ALS Reversal" describes patients who initially meet diagnostic criteria for amyotrophic lateral sclerosis (ALS) or had clinical features most consistent with progressive muscular atrophy (PMA) but subsequently demonstrated substantial and sustained clinical improvement. The objective of this genome-wide association study (GWAS) was to identify correlates of this unusual clinical phenotype. METHODS Participants were recruited from a previously created database of individuals with the ALS Reversal phenotype. Whole-genome sequencing (WGS) data were compared with ethnicity-matched patients with typically progressive ALS enrolled through the CReATe Consortium's Phenotype-Genotype-Biomarker (PGB) study. These results were replicated using an independent ethnically matched WGS data set from Target ALS. Significant results were further explored with available databases of genetic regulatory markers and expression quantitative trait loci (eQTL) analysis. RESULTS WGS from 22 participants with documented ALS Reversals was compared with the PGB primary cohort (n = 103) and the Target ALS validation cohort (n = 140). Two genetic loci met predefined criteria for statistical significance (two-sided permutation p ≤ 0.01) and remained plausible after fine-mapping. The lead single nucleotide variant (SNV) from the first locus was rs4242007 (primary cohort GWAS OR = 12.0, 95% CI 4.1 to 34.6), which is in an IGFBP7 intron and is in near-perfect linkage disequilibrium with a SNV in the IGFBP7 promoter region. Both SNVs are associated with decreased frontal cortex IGFBP7 expression in eQTL data sets. Notably, 3 Reversals, but none of the typically progressive individuals (n = 243), were homozygous for rs4242007. The importance of the second locus, located near GRIP1, is uncertain given the absence of an associated effect on nearby gene transcription. DISCUSSION We found a significant association between the Reversal phenotype and an IGFBP7 noncoding SNV that is associated with IGFBP7 expression. This is biologically relevant as IGFBP7 is a reported inhibitor of the insulin growth factor-1 (IGF-1) receptor that activates the possibly neuroprotective IGF-1 signaling pathway. This finding is limited by small sample size but suggests that there may be merit in further exploration of IGF-1 pathway signaling as a therapeutic mechanism for ALS. TRIAL REGISTRATION INFORMATION This study was registered with ClinicalTrials.gov (NCT03464903) on March 14, 2018. The first participant was enrolled on June 22, 2018.
Collapse
Affiliation(s)
- Jesse I Crayle
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Evadnie Rampersaud
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Jason R Myers
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Joanne Wuu
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - J Paul Taylor
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Gang Wu
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Michael Benatar
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| | - Richard S Bedlack
- From the Department of Neurology (J.I.C., R.S.B.), Duke University School of Medicine, Durham, NC; Department of Neurology (J.I.C.), Washington University in Saint Louis, MO; Center for Applied Bioinformatics (E.R., J.R.M., G.W.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neurology (J.W., M.B.), University of Miami Miller School of Medicine, FL; and Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
8
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the multifaceted insights into amyotrophic lateral sclerosis: Genetic underpinnings, pathogenesis, and therapeutic horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
9
|
Caldi Gomes L, Hänzelmann S, Hausmann F, Khatri R, Oller S, Parvaz M, Tzeplaeff L, Pasetto L, Gebelin M, Ebbing M, Holzapfel C, Columbro SF, Scozzari S, Knöferle J, Cordts I, Demleitner AF, Deschauer M, Dufke C, Sturm M, Zhou Q, Zelina P, Sudria-Lopez E, Haack TB, Streb S, Kuzma-Kozakiewicz M, Edbauer D, Pasterkamp RJ, Laczko E, Rehrauer H, Schlapbach R, Carapito C, Bonetto V, Bonn S, Lingor P. Multiomic ALS signatures highlight subclusters and sex differences suggesting the MAPK pathway as therapeutic target. Nat Commun 2024; 15:4893. [PMID: 38849340 PMCID: PMC11161513 DOI: 10.1038/s41467-024-49196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.
Collapse
Affiliation(s)
- Lucas Caldi Gomes
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Oller
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mojan Parvaz
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Tzeplaeff
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marie Gebelin
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Melanie Ebbing
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Holzapfel
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Serena Scozzari
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Johanna Knöferle
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Isabell Cordts
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Antonia F Demleitner
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Marcus Deschauer
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pavol Zelina
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emma Sudria-Lopez
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Sebastian Streb
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Endre Laczko
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Université de Strasbourg, Infrastructure Nationale de Protéomique, Strasbourg, France
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Paul Lingor
- Technical University of Munich, School of Medicine, rechts der Isar Hospital, Clinical Department of Neurology, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), München, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
10
|
Garcia-Montojo M, Fathi S, Rastegar C, Simula ER, Doucet-O'Hare T, Cheng YHH, Abrams RPM, Pasternack N, Malik N, Bachani M, Disanza B, Maric D, Lee MH, Wang H, Santamaria U, Li W, Sampson K, Lorenzo JR, Sanchez IE, Mezghrani A, Li Y, Sechi LA, Pineda S, Heiman M, Kellis M, Steiner J, Nath A. TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression. Nat Commun 2024; 15:4163. [PMID: 38755145 PMCID: PMC11099023 DOI: 10.1038/s41467-024-48488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Saeed Fathi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cyrus Rastegar
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Rita Simula
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Tara Doucet-O'Hare
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y H Hank Cheng
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nasir Malik
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muzna Bachani
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brianna Disanza
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute (NIH), Bethesda, MD, USA
| | - Ulisses Santamaria
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Juan Ramiro Lorenzo
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Ignacio E Sanchez
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alexandre Mezghrani
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Centre de Biologie Structurale, Centre national de la recherche scientifique (CNRS), Montpellier, France
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Leonardo Antonio Sechi
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | | | - Myriam Heiman
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Steiner
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
11
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
12
|
Udine E, DeJesus-Hernandez M, Tian S, das Neves SP, Crook R, Finch NA, Baker MC, Pottier C, Graff-Radford NR, Boeve BF, Petersen RC, Knopman DS, Josephs KA, Oskarsson B, Da Mesquita S, Petrucelli L, Gendron TF, Dickson DW, Rademakers R, van Blitterswijk M. Abundant transcriptomic alterations in the human cerebellum of patients with a C9orf72 repeat expansion. Acta Neuropathol 2024; 147:73. [PMID: 38641715 PMCID: PMC11031479 DOI: 10.1007/s00401-024-02720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Shulan Tian
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Richard Crook
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Cyril Pottier
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | | | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
13
|
Jafari Z, Sadeghi S, Dehaghi MM, Bigham A, Honarmand S, Tavasoli A, Hoseini MHM, Varma RS. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch Pharm (Weinheim) 2024; 357:e2300569. [PMID: 38251938 DOI: 10.1002/ardp.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi Dehaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Department of Chemistry, Centre of Excellence for Research in Sustainable Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
14
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
15
|
Özdemir S, Aydın Ş, Laçin BB, Arslan H. Identification and characterization of long non-coding RNA (lncRNA) in cypermethrin and chlorpyrifos exposed zebrafish (Danio rerio) brain. CHEMOSPHERE 2023; 344:140324. [PMID: 37778644 DOI: 10.1016/j.chemosphere.2023.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Pesticides, such as cypermethrin (CYP) and chlorpyrifos (CPF), are widely used around the world and are known to cause toxicological effects in the brains of fish and other non-target organisms. Long non-coding RNAs (LncRNAs) are a new class of non-coding RNAs that are highly expressed in the brain and play crucial roles in brain function by regulating gene expression. Many studies have investigated the toxic effects of CYP and CPF on the brain. However, no study has been conducted on the relationship between LncRNAs and the toxicity caused by these chemicals. Therefore, this study aimed to determine changes in the lncRNA expression profile in the brains of fish exposed to CYP and CPF. Out of a total of 482 lncRNAs that were differentially expressed between control and CPF groups, 53 were found to be up-regulated, and 429 were down-regulated. Similarly, among the 200 lncRNAs differentially expressed between the control and CYP groups, 71 were up-regulated, and 129 were down-regulated. Additionally, 268 differentially expressed lncRNAs were identified between CYP and CPF groups, with 240 being up-regulated and the rest being down-regulated. In addition, LncRNAs expressed from fish brains exposed to CYP and CPF were found to regulate multiple signaling pathways, including MAPK, FoxO, PPAR, TGF-β, and Wnt signaling pathways.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Batuhan Laçin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Harun Arslan
- Atatürk University, Faculty of Fisheries, Department of Basic Science, Erzurum, Turkey
| |
Collapse
|
16
|
Tang X, Zhan Y, Yang B, Du B, Huang J. Exploring the mechanism of Semen Strychni in treating amyotrophic lateral sclerosis based on network pharmacology. Medicine (Baltimore) 2023; 102:e35101. [PMID: 37682161 PMCID: PMC10489316 DOI: 10.1097/md.0000000000035101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Semen Strychni (SS), known as an agonist of central nervous system, is a traditional herb widely used in treating amyotrophic lateral sclerosis (ALS) in small doses to relieve muscle weakness and improve muscle strength. However, the potential mechanisms and the main components of SS in treating ALS remain unclear. To explore the underlying mechanism of SS in treating ALS based on network pharmacology and molecular docking. The active components of SS were obtained using TCMSP, Herb, ETCM, and BATMAN-TCM. The targets of SS were gained from PharmMapper. The targets of ALS were searched on Genecards, Drugbank, DisGeNET, OMIM, TTD and GEO database. After obtaining the coincidence targets, we submitted them to the STRING database to build a protein-protein interaction network. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed subsequently. The active components and targets were further investigated using molecular docking technology. 395 targets of SS and 1925 targets of ALS were obtained with 125 common targets. The protein-protein interaction analysis indicated that SRC, AKT1, MAPK1, EGFR, and HSP90AA1 received the higher degree value and were considered the central genes. The Ras, PI3K-Akt, and MAPK signaling pathway could be involved in the treatment of ALS. Brucine-N-oxide obtained the lowest binding energy in molecular docking. This study explored the mechanism of SS in the treatment of ALS and provides a new perspective for future study. However, further experimental studies are needed to validate the therapeutic effect.
Collapse
Affiliation(s)
- Xiaohui Tang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingshi Zhan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Biying Yang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Baoxin Du
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingyan Huang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Choi EY, Han EJ, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperlongumine Induces Apoptosis and Cytoprotective Autophagy via the MAPK Signaling Pathway in Human Oral Cancer Cells. Biomedicines 2023; 11:2442. [PMID: 37760883 PMCID: PMC10525218 DOI: 10.3390/biomedicines11092442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Oral cancer is a malignant tumor that primarily affects areas such as the lips, tongue, buccal mucosa, salivary gland, and gingiva and has a very high malignancy. Piperlongumine (PL), isolated from long pepper (Piper longum L.), is a natural alkaloid with pharmacological effects, such as anti-inflammatory and anti-atherosclerotic effects. The effect and mechanism of PL in oral cancer cell lines has not been explored. Therefore, this study aimed to investigate the mechanism of anticancer effects of PL in the human oral cancer cell lines MC-3 and HSC-4 in vitro. This study demonstrated that PL inhibits cell proliferation by inducing apoptosis and autophagy in human oral cancer cell lines, which was confirmed by the levels of apoptosis- and autophagy-related proteins through Western blotting. Moreover, the pharmacological blockade of autophagy activation by hydroxychloroquine (HCQ), an autophagy inhibitor, significantly improved PL-induced apoptosis in MC-3 cells, suggesting a cytoprotective effect. In addition, activation of the mitogen-activated protein kinase (MAPK) signaling pathway contributed to PL-induced apoptosis. Collectively, the study suggested that combining an autophagy inhibitor with PL treatment can exert effective anticancer properties in oral cancer cells by inducing apoptosis and cytoprotective autophagy via the JNK-mediated MAPK pathway.
Collapse
Affiliation(s)
- Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-Y.C.); (E.-J.H.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
18
|
Tzeplaeff L, Wilfling S, Requardt MV, Herdick M. Current State and Future Directions in the Therapy of ALS. Cells 2023; 12:1523. [PMID: 37296644 PMCID: PMC10252394 DOI: 10.3390/cells12111523] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder affecting upper and lower motor neurons, with death resulting mainly from respiratory failure three to five years after symptom onset. As the exact underlying causative pathological pathway is unclear and potentially diverse, finding a suitable therapy to slow down or possibly stop disease progression remains challenging. Varying by country Riluzole, Edaravone, and Sodium phenylbutyrate/Taurursodiol are the only drugs currently approved in ALS treatment for their moderate effect on disease progression. Even though curative treatment options, able to prevent or stop disease progression, are still unknown, recent breakthroughs, especially in the field of targeting genetic disease forms, raise hope for improved care and therapy for ALS patients. In this review, we aim to summarize the current state of ALS therapy, including medication as well as supportive therapy, and discuss the ongoing developments and prospects in the field. Furthermore, we highlight the rationale behind the intense research on biomarkers and genetic testing as a feasible way to improve the classification of ALS patients towards personalized medicine.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, 81675 München, Germany
| | - Sibylle Wilfling
- Department of Neurology, University of Regensburg, 93053 Regensburg, Germany;
- Center for Human Genetics Regensburg, 93059 Regensburg, Germany
| | - Maria Viktoria Requardt
- Formerly: Department of Neurology with Institute of Translational Neurology, Münster University Hospital (UKM), 48149 Münster, Germany;
| | - Meret Herdick
- Precision Neurology, University of Lübeck, 23562 Luebeck, Germany
| |
Collapse
|
19
|
Moreno R, Recio J, Barber S, Gil C, Martinez A. The emerging role of mixed lineage kinase 3 (MLK3) and its potential as a target for neurodegenerative diseases therapies. Eur J Med Chem 2023; 257:115511. [PMID: 37247505 DOI: 10.1016/j.ejmech.2023.115511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Selective and brain-permeable protein kinase inhibitors are in preclinical development for treating neurodegenerative diseases. Among them, MLK3 inhibitors, with a potent neuroprotective biological action have emerged as valuable agents for the treatment of pathologies such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis. In fact, one MLK3 inhibitor, CEP-1347, reached clinical trials for Parkinson's disease. Additionally, another compound called prostetin/12k, a potent and rather selective MLK3 inhibitor has started clinical development for ALS based on its motor neuron protection in both in vitro and in vivo models. In this review, we will focus on the role of MLK3 in neuron-related cell death processes, neurodegenerative diseases, and the potential advantages of targeting this kinase through pharmacological modulation for neuroprotective treatment.
Collapse
Affiliation(s)
- Ricardo Moreno
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Recio
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Santiago Barber
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
20
|
Sahana TG, Chase KJ, Liu F, Lloyd TE, Rossoll W, Zhang K. c-Jun N-Terminal Kinase Promotes Stress Granule Assembly and Neurodegeneration in C9orf72-Mediated ALS and FTD. J Neurosci 2023; 43:3186-3197. [PMID: 37015810 PMCID: PMC10146492 DOI: 10.1523/jneurosci.1799-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
Stress granules are the RNA/protein condensates assembled in the cells under stress. They play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, how stress granule assembly is regulated and related to ALS/FTD pathomechanism is incompletely understood. Mutation in the C9orf72 gene is the most common cause of familial ALS and FTD. C9orf72 mutation causes the formation of toxic dipeptide repeats. Here we show that the two most toxic dipeptide repeats [i.e., poly(GR) and poly(PR)] activate c-Jun N-terminal kinase (JNK) via the ER-stress response protein IRE1 using fly and cellular models. Further, we show that activated JNK promotes stress granule assembly in cells by promoting the transcription of one of the key stress granule proteins (i.e., G3BP1) by inducing histone 3 phosphorylation. Consistent with these findings, JNK or IRE1 inhibition reduced stress granule formation, histone 3 phosphorylation, G3BP1 mRNA and protein levels, and neurotoxicity in cells overexpressing poly(GR) and poly(PR) or neurons derived from male and female C9ALS/FTD patient-induced pluripotent stem cells. Our findings connect ER stress, JNK activation, and stress granule assembly in a unified pathway contributing to C9ALS/FTD neurodegeneration.SIGNIFICANCE STATEMENT c-Jun N-terminal kinase (JNK) is a part of the mitogen-activated protein kinase pathway, which is the central node for the integration of multiple stress signals. Cells are under constant stress in neurodegenerative diseases, and how these cells respond to stress signals is a critical factor in determining their survival or death. Previous studies have shown JNK as a major contributor to cellular apoptosis. Here, we show the role of JNK in stress granule assembly. We identify that toxic dipeptide repeats produced in ALS/FTD conditions activate JNK. The activated JNK in the nucleus can induce histone modifications which increase G3BP1 expression, thus promoting stress granule assembly and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Gaoke Innovation Centre A16, Guangqiao Rd, Shenzhen, Guangdong 518107, China, P.R
| |
Collapse
|
21
|
Hur J, Paez-Colasante X, Figueroa-Romero C, Lo TW, Barmada SJ, Paulsen MT, Ljungman M, Alakwaa FM, Savelieff MG, Goutman SA, Feldman EL. miRNA analysis reveals novel dysregulated pathways in amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:934-947. [PMID: 36219176 PMCID: PMC9990999 DOI: 10.1093/hmg/ddac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Its complex pathogenesis and phenotypic heterogeneity hinder therapeutic development and early diagnosis. Altered RNA metabolism is a recurrent pathophysiologic theme, including distinct microRNA (miRNA) profiles in ALS tissues. We profiled miRNAs in accessible biosamples, including skin fibroblasts and whole blood and compared them in age- and sex-matched healthy controls versus ALS participants with and without repeat expansions to chromosome 9 open reading frame 72 (C9orf72; C9-ALS and nonC9-ALS), the most frequent ALS mutation. We identified unique and shared profiles of differential miRNA (DmiRNA) levels in each C9-ALS and nonC9-ALS tissues versus controls. Fibroblast DmiRNAs were validated by quantitative real-time PCR and their target mRNAs by 5-bromouridine and 5-bromouridine-chase sequencing. We also performed pathway analysis to infer biological meaning, revealing anticipated, tissue-specific pathways and pathways previously linked to ALS, as well as novel pathways that could inform future research directions. Overall, we report a comprehensive study of a miRNA profile dataset from C9-ALS and nonC9-ALS participants across two accessible biosamples, providing evidence of dysregulated miRNAs in ALS and possible targets of interest. Distinct miRNA patterns in accessible tissues may also be leveraged to distinguish ALS participants from healthy controls for earlier diagnosis. Future directions may look at potential correlations of miRNA profiles with clinical parameters.
Collapse
Affiliation(s)
- Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ting-wen Lo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fadhl M Alakwaa
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Martinez-Gonzalez L, Martinez A. Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2023; 32:141-160. [PMID: 36762798 DOI: 10.1080/13543784.2023.2178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by motoneuron death with a median survival time of 3-5 years since disease onset. There are no effective treatments to date. However, a variety of innovative investigational drugs and biological-based therapies are under clinical development. AREAS COVERED This review provides an overview of the clinical investigational small molecules as well as a brief summary of the biological-based therapies that are currently undergoing clinical trials for the treatment of ALS. All the data were obtained from ClinicalTrials.gov (registered through November 1). EXPERT OPINION Drug discovery for ALS is an active and evolving field, where many investigational clinical drugs are in different trials. There are several mechanisms of action supporting all these new therapies, although proteostasis is gaining stage. Probably, small orally bioavailable molecules able to recover functional TDP-43 homeostasis may have solid chances to modify ALS progression.
Collapse
Affiliation(s)
- Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
D’Silva AM, Kariyawasam D, Venkat P, Mayoh C, Farrar MA. Identification of Novel CSF-Derived miRNAs in Treated Paediatric Onset Spinal Muscular Atrophy: An Exploratory Study. Pharmaceutics 2023; 15:pharmaceutics15010170. [PMID: 36678797 PMCID: PMC9865256 DOI: 10.3390/pharmaceutics15010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) have created an urgent need to identify clinically meaningful biomarkers that provide insight into disease progression and therapeutic response. microRNAs (miRNA) have been shown to be involved in the pathogenesis of SMA and have the potential to provide insight within the field of SMA. miRNA-sequencing was utilized to identify differential miRNA expression in the cerebrospinal fluid (CSF) in six children with SMA treated with nusinersen in this exploratory study. Fourteen differentially expressed miRNAs were significantly altered in CSF from baseline to follow-up during treatment with nusinersen. The greatest magnitude of change was noted in miR-7-5p, miR-15a-5p, miR-15b-3p/5p, miR-126-5p, miR-128-2-5p and miR-130a-3p which encompassed a spectrum of functions predominantly in neurogenesis, neuronal differentiation and growth. The dominant signaling pathways identified in this study were the mammalian target of rapamycin and the mitogen-activated protein kinase signaling pathways. This study identified multiple miRNAs that were involved in the complex interplay between neurodevelopment and neurodegeneration.
Collapse
Affiliation(s)
- Arlene M. D’Silva
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +61-2-9382-5517
| | - Didu Kariyawasam
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pooja Venkat
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chelsea Mayoh
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Khatoon F, Haque S, Hashem A, Mahmoud A, Tashkandi H, Mathkor D, Harakeh S, Alghamdi B, Kumar V. Network-based approach for targeting human kinases commonly associated with amyotrophic lateral sclerosis and cancer. Front Mol Neurosci 2022; 15:1023286. [PMID: 36590916 PMCID: PMC9802580 DOI: 10.3389/fnmol.2022.1023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and chronic motor neuron degenerative disease for which at present no cure is available. In recent years, multiple genes encode kinases and other causative agents for ALS have been identified. Kinases are enzymes that show pleiotropic nature and regulate different signal transduction processes and pathways. The dysregulation of kinase activity results in dramatic changes in processes and causes many other human diseases including cancers. Methods In this study, we have adopted a network-based system biology approach to investigate the kinase-based molecular interplay between ALS and other human disorders. A list of 62 ALS-associated-kinases was first identified and then we identified the disease associated with them by scanning multiple disease-gene interaction databases to understand the link between the ALS-associated kinases and other disorders. Results An interaction network with 36 kinases and 381 different disorders associated with them was prepared, which represents the complexity and the comorbidity associated with the kinases. Further, we have identified 5 miRNAs targeting the majority of the kinases in the disease-causing network. The gene ontology and pathways enrichment analysis of those miRNAs were performed to understand their biological and molecular functions along with to identify the important pathways. We also identified 3 drug molecules that can perturb the disease-causing network by drug repurposing. Conclusion This network-based study presented hereby contributes to a better knowledge of the molecular underpinning of comorbidities associated with the kinases associated with the ALS disease and provides the potential therapeutic targets to disrupt the highly complex disease-causing network.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Anwar Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hanaa Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Darin Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badra Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Kumar,
| |
Collapse
|
26
|
Swaroop RS, Pradhan SS, Darshan VMD, Phalguna KS, Sivaramakrishnan V. Integrated network pharmacology approach shows a potential role of Ginseng catechins and ginsenosides in modulating protein aggregation in Amyotrophic Lateral Sclerosis. 3 Biotech 2022; 12:333. [PMID: 36330377 PMCID: PMC9622974 DOI: 10.1007/s13205-022-03401-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Amyotrophic lateral Sclerosis is an incurable, progressive neurodegenerative motor neuron disease. The disease is characterized by protein aggregates. The symptoms include weakness, denervation of muscles, atrophy and progressive paralysis of bulbar and respiratory muscles and dysphagia. Various secondary metabolites are evaluated for their ability to improve symptoms in ALS. Ginseng has been traditionally used for treating several neurodegenerative diseases. Several studies using model systems have shown a potential role of Ginseng catechins and Ginsenosides in clearing protein aggregation associated with ALS. We focus on Network pharmacology approach to understand the effect of Ginseng catechins or ginsenosides on protein aggregation associated with ALS. A catechin/ginsenoside-protein interaction network was generated and the pathways obtained were compared with those obtained from transcriptomic datasets of ALS from GEO database. Knock out of MAPK14, AKT and GSK from Catechin and BACE 1 from ginsenoside modulated pathways inhibited protein aggregation. Catechins and ginsenosides have potential as therapeutic agents in the management of ALS. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03401-1.
Collapse
Affiliation(s)
- R. Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - V. M. Datta Darshan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| |
Collapse
|
27
|
Kubat Oktem E, Aydin B, Yazar M, Arga KY. Integrative Analysis of Motor Neuron and Microglial Transcriptomes from SOD1 G93A Mice Models Uncover Potential Drug Treatments for ALS. J Mol Neurosci 2022; 72:2360-2376. [PMID: 36178612 DOI: 10.1007/s12031-022-02071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neurons that mainly affects the motor cortex, brainstem, and spinal cord. Under disease conditions, microglia could possess two distinct profiles, M1 (toxic) and M2 (protective), with the M2 profile observed at disease onset. SOD1 (superoxide dismutase 1) gene mutations account for up to 20% of familial ALS cases. Comparative gene expression differences in M2-protective (early) stage SOD1G93A microglia and age-matched SOD1G93A motor neurons are poorly understood. We evaluated the differential gene expression profiles in SOD1G93A microglia and SOD1G93A motor neurons utilizing publicly available transcriptomics data and bioinformatics analyses, constructed biomolecular networks around them, and identified gene clusters as potential drug targets. Following a drug repositioning strategy, 5 small compounds (belinostat, auranofin, BRD-K78930611, AZD-8055, and COT-10b) were repositioned as potential ALS therapeutic candidates that mimic the protective state of microglia and reverse the toxic state of motor neurons. We anticipate that this study will provide new insights into the ALS pathophysiology linking the M2 state of microglia and drug repositioning.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Sk. D100 Karayolu Yanyol 34700, Istanbul, Turkey.
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey.,Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| |
Collapse
|
28
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
29
|
Cobos S, Torrente MP. Epidrugs in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia: Contextualizing a Role for Histone Kinase Inhibition in Neurodegenerative Disease. ACS Pharmacol Transl Sci 2022; 5:134-137. [PMID: 35187420 PMCID: PMC8844958 DOI: 10.1021/acsptsci.1c00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/23/2023]
Abstract
Breakthroughs in understanding the epigenetic mechanisms involved in neurodegenerative disease have highlighted "epidrugs" as a potential avenue for therapeutic development. Here, we expand on the future of epidrugs against neurodegeneration and discuss promising novel targets underexploited thus far: histone kinases.
Collapse
Affiliation(s)
- Samantha
N. Cobos
- Chemistry
Department of Brooklyn College, Brooklyn, New York 11210, United States,Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Mariana P. Torrente
- Chemistry
Department of Brooklyn College, Brooklyn, New York 11210, United States,Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States,Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States,Ph.D.
Program in Biology, The Graduate Center
of the City University of New York, New York, New York 10016, United States,
| |
Collapse
|
30
|
Niu Y, Ji H. Current developments in extracellular-regulated protein kinase (ERK1/2) inhibitors. Drug Discov Today 2022; 27:1464-1473. [DOI: 10.1016/j.drudis.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022]
|
31
|
Bottero V, Alrafati F, Santiago JA, Potashkin JA. Transcriptomic and Network Meta-Analysis of Frontotemporal Dementias. Front Mol Neurosci 2021; 14:747798. [PMID: 34720873 PMCID: PMC8554122 DOI: 10.3389/fnmol.2021.747798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD), also known as frontotemporal dementia (FTD), results in a progressive decline in executive function, leading to behavioral changes, speech problems, and movement disorders. FTD is the second most common cause of young-onset dementia affecting approximately 50–60,000 Americans. FTD exists in familial and sporadic forms, with GRN progranulin and C9orf72 mutations being the most common causes. In this study, we compared the sporadic and familial transcriptome within the cerebellum, frontal cortex, hippocampus, and Brodmann’s area 8 of patients with FTD to determine genes and pathways involved in the disease process. Most dysregulated genes expression occurred in the frontal cortex and Brodmann’s area 8 for genetic and sporadic forms of FTD, respectively. A meta-analysis revealed 50 genes and 95 genes are dysregulated in at least three brain regions in patients with familial mutations and sporadic FTD patients, respectively. Familial FTD genes centered on the Wnt signaling pathway, whereas genes associated with the sporadic form of FTD centered on MAPK signaling. The results reveal the similarities and differences between sporadic and familial FTD. In addition, valproic acid and additional therapeutic agents may be beneficial in treating patients with FTD.
Collapse
Affiliation(s)
- Virginie Bottero
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fahed Alrafati
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Chicago Medical School, Discipline of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|